Wednesday, March 29, 2023

Preschoolers Prefer to Learn from a Competent Robot than an Incompetent Human

Researchers at the Cognition and Language Development Lab tested three- and five-year-olds to see whether robots could be better teachers than people

From:  Concordia University

March 28, 2023 -- Who do children prefer to learn from? Previous research has shown that even infants can identify the best informant. But would preschoolers prefer learning from a competent robot over an incompetent human?

According to a new paper by Concordia researchers published in the Journal of Cognition and Development, the answer largely depends on age.

The study compared two groups of preschoolers: one of three-year-olds, the other of five-year-olds. The children participated in Zoom meetings featuring a video of a young woman and a small robot with humanoid characteristics (head, face, torso, arms and legs) called Nao sitting side by side. Between them were familiar objects that the robot would label correctly while the human would label them incorrectly, e.g., referring to a car as a book, a ball as a shoe and a cup as a dog.

Next, the two groups of children were presented with unfamiliar items: the top of a turkey baster, a roll of twine and a silicone muffin container. Both the robot and the human used different nonsense terms like "mido," "toma," "fep" and "dax" to label the objects. The children were then asked what the object was called, endorsing either the label offered by the robot or by the human.

While the three-year-olds showed no preference for one word over another, the five-year-olds were much more likely to state the term provided by the robot than the human.

"We can see that by age five, children are choosing to learn from a competent teacher over someone who is more familiar to them -- even if the competent teacher is a robot," says the paper's lead author, PhD candidate Anna-Elisabeth Baumann. Horizon Postdoctoral Fellow Elizabeth Goldman and undergraduate research assistant Alexandra Meltzer also contributed to the study. Professor and Concordia University Chair of Developmental Cybernetics Diane Poulin-Dubois in the Department of Psychology supervised the study.

The researchers repeated the experiments with new groups of three- and five-year-olds, replacing the humanoid Nao with a small truck-shaped robot called Cozmo. The results resembled those observed with the human-like robot, suggesting that the robot's morphology does not affect the children's selective trust strategies.

Baumann adds that, along with the labelling task, the researchers administered a naive biology task. The children were asked if biological organs or mechanical gears formed the internal parts of unfamiliar animals and robots. The three-year-olds appeared confused, assigning both biological and mechanical internal parts to the robots. However, the five-year-olds were much more likely to indicate that only mechanical parts belonged inside the robots.

"This data tells us that the children will choose to learn from a robot even though they know it is not like them. They know that the robot is mechanical," says Baumann.

Being right is better than being human

While there has been a substantial amount of literature on the benefits of using robots as teaching aides for children, the researchers note that most studies focus on a single robot informant or two robots pitted against each other. This study, they write, is the first to use both a human speaker and a robot to see if children deem social affiliation and similarity more important than competency when choosing which source to trust and learn from.

Poulin-Dubois points out that this study builds on a previous paper she co-wrote with Goldman and Baumann. That paper shows that by age five, children treat robots similarly to how adults do, i.e., as depictions of social agents.

"Older preschoolers know that robots have mechanical insides, but they still anthropomorphize them. Like adults, these children attribute certain human-like qualities to robots, such as the ability to talk, think and feel," she says.

"It is important to emphasize that we see robots as tools to study how children can learn from both human and non-human agents," concludes Goldman. "As technology use increases, and as children interact with technological devices more, it is important for us to understand how technology can be a tool to help facilitate their learning."

            https://www.sciencedaily.com/releases/2023/03/230328145321.htm 

Tuesday, March 28, 2023

Brightest Gamma Ray Burst Ever Observed Reveals New Mysteries of Cosmic Explosions

Scientists believe the gamma-ray emission, which lasted over 300 seconds, is the birth cry of a black hole, formed as the core of a massive and rapidly spinning star collapses under its own weight.

From:  Harvard-Smithsonian Center for Astrophysics

March 28, 2023 -- On October 9, 2022, an intense pulse of gamma-ray radiation swept through our solar system, overwhelming gamma-ray detectors on numerous orbiting satellites, and sending astronomers on a chase to study the event using the most powerful telescopes in the world.

The new source, dubbed GRB 221009A for its discovery date, turned out to be the brightest gamma-ray burst (GRB) ever recorded.

In a new study that appears today in the Astrophysical Journal Letters, observations of GRB 221009A spanning from radio waves to gamma-rays, including critical millimeter-wave observations with the Center for Astrophysics | Harvard & Smithsonian's Submillimeter Array (SMA) in Hawaii, shed new light on the decades-long quest to understand the origin of these extreme cosmic explosions.

The gamma-ray emission from GRB 221009A lasted over 300 seconds. Astronomers think that such "long-duration" GRBs are the birth cry of a black hole, formed as the core of a massive and rapidly spinning star collapses under its own weight. The newborn black hole launches powerful jets of plasma at near the speed of light, which pierce through the collapsing star and shine in gamma-rays.

With GRB 221009A being the brightest burst ever recorded, a real mystery lay in what would come after the initial burst of gamma-rays. "As the jets slam into gas surrounding the dying star, they produce a bright `afterglow' of light across the entire spectrum," says Tanmoy Laskar, assistant professor of physics and astronomy at the University of Utah, and lead author of the study. "The afterglow fades quite rapidly, which means we have to be quick and nimble in capturing the light before it disappears, taking its secrets with it."

As part of a campaign to use the world's best radio and millimeter telescopes to study the afterglow of GRB 221009A, astronomers Edo Berger and Yvette Cendes of the Center for Astrophysics (CfA) rapidly gathered data with the SMA.

"This burst, being so bright, provided a unique opportunity to explore the detailed behavior and evolution of an afterglow with unprecedented detail -- we did not want to miss it!" says Edo Berger, professor of astronomy at Harvard University and the CfA. "I have been studying these events for more than twenty years, and this one was as exciting as the first GRB I ever observed."

"Thanks to its rapid-response capability, we were able to quickly turn the SMA to the location of GRB 221009A," says SMA project scientist and CfA researcher Garrett Keating. "The team was excited to see just how bright the afterglow of this GRB was, which we were able to continue to monitor for more than 10 days as it faded."

After analyzing and combining the data from the SMA and other telescopes all over the world, the astronomers were flummoxed: the millimeter and radio wave measurements were much brighter than expected based on the visible and X-ray light.

"This is one of the most detailed datasets we have ever collected, and it is clear that the millimeter and radio data just don't behave as expected," says CfA research associate Yvette Cendes. "A few GRBs in the past have shown a brief excess of millimeter and radio emission that is thought to be the signature of a shockwave in the jet itself, but in GRB 221009A the excess emission behaves quite differently than in these past cases."

She adds, "It is likely that we have discovered a completely new mechanism to produce excess millimeter and radio waves."

One possibility, says Cendes, is that the powerful jet produced by GRB 221009A is more complex than in most GRBs. "It is possible that the visible and X-ray light are produced by one portion of the jet, while the early millimeter and radio waves are produced by a different component."

"Luckily, this afterglow is so bright that we will continue to study its radio emission for months and maybe years to come," adds Berger. "With this much longer time span we hope to decipher the mysterious origin of the early excess emission."

Independent of the exact details of this particular GRB, the ability to respond rapidly to GRBs and similar events with millimeter-wave telescopes is an essential new capability for astronomers.

"A key lesson from this GRB is that without fast-acting radio and millimeter telescopes, such as the SMA, we would miss out on potential discoveries about the most extreme explosions in the universe," says Berger. "We never know in advance when such events will occur, so we have to be as responsive as possible if we're going to take advantage of these gifts from the cosmos."

            https://www.sciencedaily.com/releases/2023/03/230328145539.htm

 


Monday, March 27, 2023

How the Brain's Internal Compass Works

New study reveals how the brain makes sense of changing environmental cues

From:  McGill University [in Canada]

March 23, 2023 -- Scientists have gained new insights into the part of the brain that gives us a sense of direction, by tracking neural activity with the latest advances in brain imaging techniques. The findings shed light on how the brain orients itself in changing environments – and even the processes that can go wrong with degenerative diseases like dementia, that leave people feeling lost and confused.

“Neuroscience research has witnessed a technology revolution in the last decade allowing us to ask and answer questions that could only be dreamed of just years ago,” says Mark Brandon, an Associate Professor of psychiatry at McGill University and researcher at the Douglas Research Centre, who co-led the research with Zaki Ajabi, a former student at McGill University and now a postdoctoral research fellow at Harvard University.

Reading the brain's internal compass

To understand how visual information impacts the brain’s internal compass, the researchers exposed mice to a disorienting virtual world while recording the brain's neural activity. The team recorded the brain’s internal compass with unprecedented precision using the latest advances in neuronal recording technology.

This ability to accurately decode the animal's internal head direction allowed the researchers to explore how the Head-Direction cells, which make up the brain’s internal compass, support the brain’s ability to re-orient itself in changing surroundings. Specifically, the research team identified a phenomenon they term ‘network gain’ that allowed the brain’s internal compass to reorient after the mice were disoriented. “It’s as if the brain has a mechanism to implement a ‘reset button’ allowing for rapid reorientation of its internal compass in confusing situations,” says Ajabi.

Although the animals in this study were exposed to unnatural visual experiences, the authors argue that such scenarios are already relevant to the modern human experience, especially with the rapid spread of virtual reality technology. These findings “may eventually explain how virtual reality systems can easily take control over our sense of orientation,” adds Ajabi.

The results inspired the research team to develop new models to better understand the underlying mechanisms. “This work is a beautiful example of how experimental and computational approaches together can advance our understanding of brain activity that drives behaviour,” says co-author Xue-Xin Wei, a computational neuroscientist and an Assistant Professor at The University of Texas at Austin.

Degenerative diseases

The findings also have significant implications for Alzheimer's disease. “One of the first self-reported cognitive symptoms of Alzheimer’s is that people become disoriented and lost, even in familiar settings,” says Brandon. The researchers expect that a better understanding of how the brain's internal compass and navigation system works will lead to earlier detection and better assessment of treatments for Alzheimer’s disease.

About the study

"Population dynamics of head-direction neurons during drift and reorientation" by Zaki Ajabi, Alexandra Keinath, Xue-Xin Wei, and Mark Brandon was published in Nature. The research was supported by the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research.

https://www.mcgill.ca/newsroom/channels/news/how-brains-internal-compass-works-347094 

Sunday, March 26, 2023

Genome of a Drought Tolerant Plant: Many Genes Are Involved in Resurrection

From:  University of Bonn

March 23, 2023

Some plants can survive months without water, only to turn green again after a brief downpour. A recent study by the Universities of Bonn and Michigan shows that this is not due to a "miracle gene." Rather, this ability is a consequence of a whole network of genes, almost all of which are also present in more vulnerable varieties. The results have already appeared online in advance in the journal "The Plant Journal." The print edition will be published soon.

In their study, the researchers took a close look at a species that has long been studied at the University of Bonn -- the resurrection plant Craterostigma plantagineum. It bears its name quite rightly: In times of drought, one might think it is dead. But even after months of drought, a little water is enough to revive it. "At our institute, we have been studying how the plant does this for many years," explains Prof. Dr. Dorothea Bartels from the Institute of Molecular Physiology and Biotechnology of Plants (IMBIO) at the University of Bonn.

Her interests include the genes that are responsible for drought tolerance. It became increasingly clear that this ability is not the result of a single "miracle gene." Instead, a great many genes are involved, most of which are also found in species that do not cope so well with drought.

The plant has eight copies of each chromosome

In the current study, Bartel's team, together with researchers from the University of Michigan (USA), analyzed the complete genome of Craterostigma plantagineum. And this is built quite complex: While most animals have two copies of each chromosome -- one from the mother, one from the father -- Craterostigma has eight. Such an "eightfold" genome is also called octoploid. We humans, in contrast, are diploid.

"Such a multiplication of genetic information can be observed in many plants that have evolved under extreme conditions," Bartels says. But why is that? A probable reason: If a gene is present in eight copies instead of two, it can in principle be read four times as fast. An octoploid genome can therefore enable large quantities of a required protein to be produced very quickly. This ability also appears to be important for the development of drought tolerance.

In Craterostigma, some genes associated with greater tolerance to drought are even further replicated. These include the so-called ELIPs -- the acronym stands for "early light inducible proteins," as they are rapidly switched on by light and protect against oxidative stress. They occur in high copy numbers in all drought-tolerant species. "Craterostigma has close to 200-ELIP genes that are nearly identical and are located in large clusters of ten or twenty copies on different chromosomes," Bartels explains. Drought-tolerant plants can therefore presumably draw on an extensive network of genes that they can rapidly upregulate in the event of drought.

Drought-sensitive species usually have the same genes -- albeit in lower copy numbers. This is also not surprising: The seeds and pollen of most plants are often still able to germinate after long periods without water. So they also have a genetic program to protect against drought. "However, this program is normally switched off at germination and cannot be reactivated afterwards," the botanist explains. "In resurrection plants, in contrast, it remains active."

Most species "can do" drought tolerance

Drought tolerance, then, is something that the vast majority of plants "can do." The genes that confer this ability probably emerged very early in the course of evolution. However, these networks are more efficient in drought-tolerant species and, moreover, are not active only at certain stages of the life cycle.

That said, not every cell in Craterostigma plantagineum has the same "drought program" either. This was shown by researchers from the University of Düsseldorf, who were also involved in the study. For instance, different drought network genes are active in roots during desiccation than in leaves. This finding is not unexpected: Leaves, for instance, need to protect themselves against the damaging effects of the sun. They are helped in this by ELIPs, for example. With sufficient moisture, the plant forms photosynthetic pigments that at least partially absorb radiation. This natural protection largely fails during drought. Roots, in contrast, do not have to worry about sunburn.

The study improves understanding of why some species suffer so little from drought. In the long term, it could therefore contribute to the breeding of crops such as wheat or corn that cope better with drought. In times of climate change, these are likely to be in greater demand than ever in the future.

Participating institutions and funding:

In addition to the University of Bonn, Michigan State University (USA) and Heinrich Heine University Düsseldorf were involved in the study. The work was funded by the US National Science Foundation (NSF) and the German Research Foundation (DFG).

Genome of a drought-tolerant plant: Many genes are involved in 'resurrection' -- ScienceDaily

  

Saturday, March 25, 2023

Artificial Intelligence Discovers Secret Equation for Weighing Galaxy Clusters

From:  Flatiron Institute Center for Computational Astrophysics

March 23, 2023 -- Astrophysicists at the Institute for Advanced Study, the Flatiron Institute and their colleagues have leveraged artificial intelligence to uncover a better way to estimate the mass of colossal clusters of galaxies. The AI discovered that by just adding a simple term to an existing equation, scientists can produce far better mass estimates than they previously had.

The improved estimates will enable scientists to calculate the fundamental properties of the universe more accurately, the astrophysicists reported March 17, 2023, in the Proceedings of the National Academy of Sciences.

“It’s such a simple thing; that’s the beauty of this,” says study co-author Francisco Villaescusa-Navarro, a research scientist at the Flatiron Institute’s Center for Computational Astrophysics (CCA) in New York City. “Even though it’s so simple, nobody before found this term. People have been working on this for decades, and still they were not able to find this.”

The work was led by Digvijay Wadekar of the Institute for Advanced Study in Princeton, New Jersey, along with researchers from the CCA, Princeton University, Cornell University and the Center for Astrophysics | Harvard & Smithsonian.

Understanding the universe requires knowing where and how much stuff there is. Galaxy clusters are the most massive objects in the universe: A single cluster can contain anything from hundreds to thousands of galaxies, along with plasma, hot gas and dark matter. The cluster’s gravity holds these components together. Understanding such galaxy clusters is crucial to pinning down the origin and continuing evolution of the universe.

Perhaps the most crucial quantity determining the properties of a galaxy cluster is its total mass. But measuring this quantity is difficult — galaxies cannot be ‘weighed’ by placing them on a scale. The problem is further complicated because the dark matter that makes up much of a cluster’s mass is invisible. Instead, scientists deduce the mass of a cluster from other observable quantities.

In the early 1970s, Rashid Sunyaev, current distinguished visiting professor at the Institute for Advanced Study’s School of Natural Sciences, and his collaborator Yakov B. Zel’dovich developed a new way to estimate galaxy cluster masses. Their method relies on the fact that as gravity squashes matter together, the matter’s electrons push back. That electron pressure alters how the electrons interact with particles of light called photons. As photons left over from the Big Bang’s afterglow hit the squeezed material, the interaction creates new photons. The properties of those photons depend on how strongly gravity is compressing the material, which in turn depends on the galaxy cluster’s heft. By measuring the photons, astrophysicists can estimate the cluster’s mass.

However, this ‘integrated electron pressure’ is not a perfect proxy for mass, because the changes in the photon properties vary depending on the galaxy cluster. Wadekar and his colleagues thought an artificial intelligence tool called ‘symbolic regression’ might find a better approach. The tool essentially tries out different combinations of mathematical operators — such as addition and subtraction — with various variables, to see what equation best matches the data.

Wadekar and his collaborators ‘fed’ their AI program a state-of-the-art universe simulation containing many galaxy clusters. Next, their program, written by CCA research fellow Miles Cranmer, searched for and identified additional variables that might make the mass estimates more accurate.

AI is useful for identifying new parameter combinations that human analysts might overlook. For example, while it is easy for human analysts to identify two significant parameters in a dataset, AI can better parse through high volumes, often revealing unexpected influencing factors.

“Right now, a lot of the machine-learning community focuses on deep neural networks,” Wadekar explained. “These are very powerful, but the drawback is that they are almost like a black box. We cannot understand what goes on in them. In physics, if something is giving good results, we want to know why it is doing so. Symbolic regression is beneficial because it searches a given dataset and generates simple mathematical expressions in the form of simple equations that you can understand. It provides an easily interpretable model.”

The researchers’ symbolic regression program handed them a new equation, which was able to better predict the mass of the galaxy cluster by adding a single new term to the existing equation. Wadekar and his collaborators then worked backward from this AI-generated equation and found a physical explanation. They realized that gas concentration correlates with the regions of galaxy clusters where mass inferences are less reliable, such as the cores of galaxies where supermassive black holes lurk. Their new equation improved mass inferences by downplaying the importance of those complex cores in the calculations. In a sense, the galaxy cluster is like a spherical doughnut. The new equation extracts the jelly at the center of the doughnut that can introduce larger errors, and instead concentrates on the doughy outskirts for more reliable mass inferences.

The researchers tested the AI-discovered equation on thousands of simulated universes from the CCA’s CAMELS suite. They found that the equation reduced the variability in galaxy cluster mass estimates by around 20 to 30 percent for large clusters compared with the currently used equation.

The new equation can provide observational astronomers engaged in upcoming galaxy cluster surveys with better insights into the mass of the objects they observe. “There are quite a few surveys targeting galaxy clusters [that] are planned in the near future,” Wadekar noted. “Examples include the Simons Observatory, the Stage 4 CMB experiment and an X-ray survey called eROSITA. The new equations can help us in maximizing the scientific return from these surveys.”

Wadekar also hopes that this publication will be just the tip of the iceberg when it comes to using symbolic regression in astrophysics. “We think that symbolic regression is highly applicable to answering many astrophysical questions,” he said. “In a lot of cases in astronomy, people make a linear fit between two parameters and ignore everything else. But nowadays, with these tools, you can go further. Symbolic regression and other artificial intelligence tools can help us go beyond existing two-parameter power laws in a variety of different ways, ranging from investigating small astrophysical systems like exoplanets, to galaxy clusters, the biggest things in the universe.”

Artificial Intelligence Discovers Secret Equation for ‘Weighing’ Galaxy Clusters (simonsfoundation.org) 

Friday, March 24, 2023

Road Noise Makes Your Blood Pressure Rise – Literally

Study shows the sound of traffic is associated with increased risk of hypertension, calls for public health measures to reduce noise exposure.

From:  American College of Cardiology

Mar 22, 2023 -- If you live near a busy road you might feel like the constant sound of roaring engines, honking horns and wailing sirens makes your blood pressure rise. Now a new study published today in JACC: Advances confirms it can do exactly that.

Previous studies have shown a  connection between noisy road traffic and increased risk of hypertension. However, strong evidence was lacking, and it was unclear whether noise or air pollution played a bigger role. The new research shows that it is exposure to road traffic noise itself that can elevate hypertension risk.

“We were a little surprised that the association between road traffic noise and hypertension was robust even after adjustment for air pollution,” said Jing Huang, assistant professor in the Department of Occupational and Environmental Health Sciences in the School of Public Health at Peking University in Beijing, China, and lead author of the study.

Previous studies of the issue were cross-sectional, meaning they showed that traffic noise and hypertension were linked, but failed to show a causal relationship. For the new paper, researchers conducted a prospective study using UK Biobank data that looked at health outcomes over time.

Researchers analyzed data from more than 240,000 people (aged 40 to 69 years) who started out without hypertension. They estimated road traffic noise based on residential address and the Common Noise Assessment Method, a European modeling tool.

Using follow-up data over a median 8.1 years, they looked at how many people developed hypertension. Not only did they find that people living near road traffic noise were more likely to develop hypertension, they also found that risk increased in tandem with the noise “dose.”

These associations held true even when researchers adjusted for exposure to fine particles and nitrogen dioxide. However, people who had high exposure to both traffic noise and air pollution had the highest hypertension risk, showing that air pollution plays a role as well.

“Road traffic noise and traffic-related air pollution coexist around us,” Huang said. “It is essential to explore the independent effects of road traffic noise, rather than the total environment.”

The findings can support public health measures because they confirm that exposure to road traffic noise is harmful to our blood pressure, she said. Policymaking may alleviate the adverse impacts of road traffic noise as a societal effort, such as setting stricter noise guideline and enforcement, improving road conditions and urban design, and investing advanced technology on quieter vehicles.

“To date, this is the first large-sized prospective study directly addressing the effect of road traffic noise on the incidence of newly-diagnosed hypertension,” said Jiandong Zhang, cardiovascular disease fellow in the division of cardiology at the University of North Carolina at Chapel Hill, and author of the accompanying editorial comment. “The data demonstrated in this article provides a higher quality of evidence to justify the potential to modify road traffic noise and air pollution from both individual and societal levels in improving cardiovascular health.”

As a follow-up, Huang said field studies are underway to better understand the pathophysiological mechanisms through which road noise affects hypertension.

The study was supervised by Kazem Rahimi, lead of the Deep Medicine program at the Nuffield Department of Women’s and Reproductive Health at the University of Oxford, and Samuel Cai, lecturer in environmental epidemiology at the Centre for Environmental Health and Sustainability at the University of Leicester.

Road Noise Makes Your Blood Pressure Rise – Literally - American College of Cardiology (acc.org)

 

Thursday, March 23, 2023

Yes You Can Be Too Tired to Sleep

Like toddlers, adults can also get "overtired."

From:  Big Think.com

March 22, 2023 -- KEY TAKEAWAYS

  • "Overtiredness" is often blamed when infants are unable to fall asleep at night because they are stuck in an alert, emotional state. 
  • Adults can become overtired as well. Fatigue makes it harder for us to regulate emotions and process thoughts rationally, making it difficult to wind down at night. 
  • Giving your brain breaks during the day from our "always-on" existence can help prevent your brain from becoming overtired.

An “overtired” toddler is the bane of many parents’ existences. Your child hasn’t slept in a while and is clearly fatigued. Yet laying in the crib, they are restless and agitated, unable to gently drift off to dreamland and noisily demand your attention.

When overtired, toddlers are likely stuck in an emotional state, such as excitement, anxiety, or fear, wrote Helen L. Ball, a professor of anthropology and director of the Durham Infancy & Sleep Centre at Durham University.

“This is a survival response that helps us to stay awake when in danger, no matter how tired we are.”

Too emotional to sleep

But the crib tends to be a cozy, quiet, and safe place, so why is this survival response engaged? It’s because the longer humans go without sleep, the harder it is for us to regulate our emotions. A notable 2007 study showed that the emotion centers of sleep-deprived brains are more reactive to stimuli compared to rested brains.

“It’s almost as though, without sleep, the brain had reverted back to more primitive patterns of activity, in that it was unable to put emotional experiences into context and produce controlled, appropriate responses,” study author Matthew Walker, a professor of neuroscience and psychology at the University of California-Berkeley, and founder and director of the Center for Human Sleep Science, said of the findings.

An “overtired” toddler is the bane of many parents’ existences. Your child hasn’t slept in a while and is clearly fatigued. Yet laying in the crib, they are restless and agitated, unable to gently drift off to dreamland and noisily demand your attention.

When overtired, toddlers are likely stuck in an emotional state, such as excitement, anxiety, or fear, wrote Helen L. Ball, a professor of anthropology and director of the Durham Infancy & Sleep Centre at Durham University.

“This is a survival response that helps us to stay awake when in danger, no matter how tired we are.”

Too emotional to sleep

But the crib tends to be a cozy, quiet, and safe place, so why is this survival response engaged? It’s because the longer humans go without sleep, the harder it is for us to regulate our emotions. A notable 2007 study showed that the emotion centers of sleep-deprived brains are more reactive to stimuli compared to rested brains.

“It’s almost as though, without sleep, the brain had reverted back to more primitive patterns of activity, in that it was unable to put emotional experiences into context and produce controlled, appropriate responses,” study author Matthew Walker, a professor of neuroscience and psychology at the University of California-Berkeley, and founder and director of the Center for Human Sleep Science, said of the findings.

Since infants need more sleep than adults — anywhere from 12 to 16 hours each day broken into numerous naps in addition to a longer nighttime bout — it’s easy for them to reach that overtired state, but adults are susceptible as well. Have you ever laid awake at night, dwelling on decisions you made earlier that day or planning for the chores you face tomorrow? You’re more likely to find yourself locked in this insidious cycle of rumination if you’re overtired.

“Rested brains are good at ignoring things that happen all the time but have no real consequence,” Matt Jones, a professor of neuroscience at the University of Bristol, told BBC Science Focus. But when overtired or experiencing insomnia, “you’re less able to let go — consciously or unconsciously — of irrelevant information,” he further explained.

Coincidentally, parents of young, potentially overtired kids are themselves more at risk of being overtired themselves. Balancing work and childcare, along with personal physical hygiene, while hopefully attempting to maintain a semblance of a social life, can be mentally and physically exhausting. Our incessantly “on,” hyper-connected existence can also make us overtired. Work emails at all hours, rapid-fire news reports, and social media notifications leave our brains little chance to relax during the day.

How to avoid being overtired

Allotting time for peace and quiet can help. A study published last fall found that a peaceful one-hour walk in nature free from other distractions soothes activity in the amygdala, the primary brain area that processes emotions, including fear and anxiety.

Also helpful is adopting good sleep hygiene. After all, poor sleep also makes us overtired, a brutal feedback loop. If possible, reduce the distractions you face at least an our before bedtime, particularly from technological sources. Importantly, this winding down process should not occur in bed.

“It’s all about managing what’s called ‘stimulus control,’ Dr. Alex Scott, a lecturer in psychology at Keele University told BBC Science Focus. “This basically means it’s a good idea not to associate your bed with too much worrying — that can lead to more sleep problems.”

The rumination that occasionally creates a sleepless night is often a product of your actions earlier in the day. Preventing your brain from getting overtired will make it easier to find peaceful repose at night.

                Yes, you can be too tired to sleep - Big Think