Friday, December 27, 2013

Brief History of the Compact Disc

Compact disc, or CD for short, is a digital optical, disc data storage format. The format was originally developed to store and play back sound recordings only (CD-DA), but was later adapted for storage of data (CD-ROM). Several other formats were further derived from these, including write-once audio and data storage (CD-R), rewritable media (CD-RW), Video Compact Disc (VCD), Super Video Compact Disc (SVCD), Photo CD, PictureCD, CD-i, and Enhanced Music CD. Audio CDs and audio CD players have been commercially available since October 1982.

Standard CDs have a diameter of 120 millimetres (4.7 in) and can hold up to 80 minutes of uncompressed audio or 700 MiB (actually about 703 MiB or 737 MB) of data. The Mini CD has various diameters ranging from 60 to 80 millimetres (2.4 to 3.1 in); they are sometimes used for CD singles, storing up to 24 minutes of audio or delivering device drivers.

At the time of the technology's introduction it had much greater capacity than computer hard drives common at the time. The reverse is now true, with hard drives far exceeding the capacity of CDs.

In 2004, worldwide sales of CD audio, CD-ROM, and CD-R reached about 30 billion discs. By 2007, 200 billion CDs had been sold worldwide. Compact discs are increasingly being replaced or supplemented by other forms of digital distribution and storage, such as downloading and flash drives, with audio CD sales dropping nearly 50% from their peak in 2000.

Further Development and Decline
The CD was planned to be the successor of the gramaphone record for playing music, rather than primarily as a data storage medium. From its origins as a musical format, CDs have grown to encompass other applications. In June 1985, the computer-readable CD-ROM (read-only memory) and, in 1990, CD-Recordable were introduced, also developed by both Sony and Philips. Recordable CDs are an alternative to tape for recording music and copying music albums without defects introduced in compression used in other digital recording methods. Other newer video formats such as DVD and Blu-ray use the same physical geometry as CD, and most DVD and Blu-ray players are backward compatible with Audio CD.

By the early 2000s, the CD had largely replaced the audio cassette player as standard equipment in new automobiles, with 2010 being the final model year for any car in the US to have a factory-equipped cassette player. With the increasing popularity of portable digital audio players and solid state music storage, CD players are being phased out of automobiles in favor of minijack auxiliary inputs and connections to USB devices.

Meanwhile, with the advent and popularity of digital audio formats, such as the 256 kbit m4a, sales of CDs began dropping in the 2000s. For example, during the eight-year period ending in 2008, despite overall growth in music sales and one anomalous year of increase, major-label CD sales declined overall by 20% although independent and DIY music sales may be tracking better according to figures released March 30, 2009 and CDs still sell greatly nonetheless.

Integrity
CDs are susceptible to damage during handling and from environmental exposure. Pits are much closer to the label side of a disc, enabling defects and contaminants on the clear side to be out of focus during playback. Consequently, CDs are more likely to suffer damage on the label side of the disc. Scratches on the clear side can be repaired by refilling them with similar refractive plastic, or by careful polishing. The edges of CDs are sometimes incompletely sealed, allowing gases and liquids to corrode the metal reflective layer and to interfere with the focus of the laser on the pits. The fungi Geotrichum candidum, found in Belize, has been found to consume the polycarbonate plastic and aluminium found in CD's.

http://en.wikipedia.org/wiki/Compact_disk

No comments:

Post a Comment