Monday, December 9, 2013

Isambard Kingdom Brunel

Isambard Kingdom Brunel, FRS [Fellow of the Royal Society] (9 April 1806 – 15 September 1859), was an English mechanical and civil engineer who built dockyards, the Great Western Railway, a series of steamships including the first propeller-driven transatlantic steamship and numerous important bridges and tunnels. His designs revolutionised public transport and modern engineering.

Though Brunel's projects were not always successful, they often contained innovative solutions to long-standing engineering problems. During his short career, Brunel achieved many engineering "firsts", including assisting in the building of the first tunnel under a navigable river and development of SS Great Britain, the first propeller-driven ocean-going iron ship, which was at the time (1843) also the largest ship ever built.
Brunel set the standard for a very well built railway, using careful surveys to minimise grades and curves. This necessitated expensive construction techniques and new bridges and viaducts, and the two-mile-long Box Tunnel. One controversial feature was the wide gauge, a "broad gauge" of 7 ft 14 in (2,140 mm), instead of what was later to be known as 'standard gauge' of 4 ft 8 12 in (1,435 mm). The wider gauge added to passenger comfort but made construction much more expensive and caused difficulties when eventually it had to interconnect with other railways using the narrower gauge. As a result of the Railway Regulation (Gauge) Act 1846, the gauge was changed to standard gauge throughout the GWR network.
Brunel astonished Britain by proposing to extend the Great Western Railway westward to North America by building steam-powered iron-hulled ships. He designed and built three ships that revolutionised naval engineering.


                                                         Isambard Kingdom Brunel with
                                                         the launching chains for the Great
                                                         Eastern in 1857

In 2002, Brunel was placed second in a BBC public poll to determine the "100 Greatest Britons".
[Only Winston Churchill placed higher]. In 2006, the bicentenary of his birth, a major programme of events celebrated his life and work under the name Brunel 200.
Early Life
The son of French civil engineer Sir Marc Isambard Brunel and Sophia Kingdom Brunel, Isambard Kingdom Brunel was born on 9 April 1806 in Britan Street, Portsea, Portsmouth, Hampshire, where his father was working on block-making machinery. He had two older sisters, Sophia (oldest child, Sophia) and Emma, and the whole family moved to London in 1808 for his father's work. Brunel had a happy childhood, despite the family's constant money worries, with his father acting as his teacher during his early years. His father taught him drawing and observational techniques from the age of four and Brunel had learned Euclidean geometry by eight. During this time he also learned fluent French and the basic principles of engineering. He was encouraged to draw interesting buildings and identify any faults in their structure

When Brunel was eight he was sent to Dr Morrell's boarding school in Hove, where he learned the classics. His father, a Frenchman by birth, was determined that Brunel should have access to the high-quality education he had enjoyed in his youth in France; accordingly, at the age of 14, the younger Brunel was enrolled first at the College of Caen in Normandy, then at Lycee Henri-Quatre in Paris. When Brunel was 15, his father, who had accumulated debts of over £5,000, was sent to a debtors’ prison. After three months went by with no prospect of release, Marc let it be known that he was considering an offer from the
Tsar of Russia. In August 1821, facing the prospect of losing a prominent engineer, the government relented and issued Marc £5,000 to clear his debts in exchange for his promise to remain in Britain. When Brunel completed his studies at Henri-Quatre in 1822, his father had him presented as a candidate at the renowned engineering school Ecole Polytechnique, but as a foreigner he was deemed ineligible for entry. Brunel subsequently studied under the prominent master clockmaker and horologist Abraham Louis Breguet, who praised Brunel's potential in letters to his father. In late 1822, having completed his apprenticeship, Brunel returned to England.

Thames Tunnel
Brunel worked for several years as an assistant engineer on the project to create a tunnel under London's River Thames, with tunnellers driving a horizontal shaft from one side of the river to the other under the most difficult and dangerous conditions. Brunel's father, Marc, was the chief engineer, and the project was funded by the Thames Tunnel Company.

The composition of the riverbed at Rotherhithe was often little more than waterlogged sediment and loose gravel. An ingenious tunnelling shield designed by Marc Brunel helped protect workers from cave-ins, but two incidents of severe flooding halted work for long periods, killing several workers and badly injuring the younger Brunel. The latter incident, in 1828, killed the two most senior miners, and Brunel himself narrowly escaped death. He was seriously injured, and spent six months recuperating.[16] The event stopped work on the tunnel for several years.

Bridges
Brunel is perhaps best remembered for designing the Clifton Suspension Bridge in Bristol. Spanning over 700 ft (210 m), and nominally 200 ft (61 m) above the River Avon, it had the longest span of any bridge in the world at the time of construction. Brunel submitted four designs to a committee headed by Thomas Telford, but Telford rejected all entries, proposing his own design instead. Vociferous opposition from the public forced the organising committee to hold a new competition, which was won by Brunel. Afterwards, Brunel wrote to his brother-in-law, the politician Benjamin Hawes: "Of all the wonderful feats I have performed, since I have been in this part of the world, I think yesterday I performed the most wonderful. I produced unanimity among 15 men who were all quarrelling about that most ticklish subject— taste".

Work on the Clifton bridge started in 1831, but was suspended due to the Queen Square riots caused by the arrival of Sir Charles Wetherell in Clifton. The riots drove away investors, leaving no money for the project, and construction ceased. Brunel did not live to see the bridge finished, although his colleagues and admirers at the Institution of Civil Engineers felt it would be a fitting memorial, and started to raise new funds and to amend the design. Work recommenced in 1862 and was completed in 1864, five years after Brunel's death. In 2011 it was suggested, by historian and biographer Adrian Vaughan, that Brunel did not design the bridge, as eventually built, as the later changes to its design were substantial. The Clifton Suspension Bridge still stands, and over 4 million vehicles traverse it every year.

Brunel designed many bridges for his railway projects, including the Royal Albert Bridge spanning the River Tamar at Saltash near Plymouth, Somerset Bridge (an unusual laminated timber-framed bridge near Bridgwater), the Windsor Railway Bridge, and the Maidenhead Railway Bridge over the Thames in Berkshire. This last was the flattest, widest brick arch bridge in the world and is still carrying main line trains to the west, even though today's trains are about ten times heavier than in Brunel's time.
In 1845 Hungerford Bridge, a suspension footbridge across the Thames near Charing Cross Station in London, was opened. It was replaced by a new railway bridge in 1859, and the suspension chains were used to complete the Clifton Suspension Bridge.

Several of Brunel's bridges over the Great Western Railway might be demolished because the line is to be electrified, and there is inadequate clearance for overhead wires. Buckinghamshire County Council is negotiating to have further options pursued, in order that all nine of the remaining historic bridges on the line can be saved.

Great Western Railway
In the early part of Brunel's life, the use of railways began to take off as a major means of transport for goods. This influenced Brunel's involvement in railway engineering, including railway bridge engineering.

In 1833, before the Thames Tunnel was complete, Brunel was appointed chief engineer of the Great Western Railway, one of the wonders of Victorian Britain, running from London to Bristol and later Exeter. The company was founded at a public meeting in Bristol in 1833, and was incorporated by Act of Parliament in 1835. It was Brunel's vision that passengers would be able to purchase one ticket at London Paddington and travel from London to New York, changing from the Great Western Railway to the Great Western steamship at the terminus in Neyland, South Wales. He surveyed the entire length of the route between London and Bristol himself, with the help of many including his Solicitor Jeremiah Osborne of Bristol Law Firm Osborne Clarke who one occasion rowed Isambard Kingdom Brunel down the River Avon himself to survey the bank of the river for the route.

Brunel made two controversial decisions: to use a broad gauge of 7 ft 14 in (2,140 mm) for the track, which he believed would offer superior running at high speeds; and to take a route that passed north of the Marlborough Downs—an area with no significant towns, though it offered potential connections to Oxford and Gloucester—and then to follow the Thames Valley into London. His decision to use broad gauge for the line was controversial in that almost all British railways to date had used standard gauge. Brunel said that this was nothing more than a carry-over from the mine railways that George Stephenson had worked on prior to making the world's first passenger railway. Brunel proved through both calculation and a series of trials that his broader gauge was the optimum size for providing both higher speeds and a stable and comfortable ride to passengers. In addition the wider gauge allowed for larger carriages and thus greater freight capacity.

Transatlantic Shipping
In 1835, before the Great Western Railway had opened, Brunel proposed extending its transport network by boat from Bristol across the Atlantic Ocean to New York City. The Great Western Steamship Company was formed by Thomas Guppy for that purpose. It was widely disputed whether it would be commercially viable for a ship powered purely by steam to make such long journeys. Technological developments in the early 1830s—including the invention of the surface condenser, which allowed boilers to run on salt water without stopping to be cleaned—made longer journeys more possible, but it was generally thought that a ship would not be able to carry enough fuel for the trip and have room for a commercial cargo. Brunel formulated the theory that the amount a ship could carry increased as the cube of its dimensions, whereas the amount of resistance a ship experienced from the water as it travelled only increased by a square of its dimensions. This would mean that moving a larger ship would take proportionately less fuel than a smaller ship. To test this theory, Brunel offered his services for free to the Great Western Steamship Company, which appointed him to its building committee and entrusted him with designing its first ship, the Great Western.

When it was built, the Great Western was the longest ship in the world at 236 ft (72 m) with a 250-foot (76 m) keel. The ship was constructed mainly from wood, but Brunel added bolts and iron diagonal reinforcements to maintain the keel's strength. In addition to its steam-powered paddle wheels, the ship carried four masts for sails. The Great Western embarked on her maiden voyage from Avonmouth, Bristol, to New York on 8 April 1838 with 600 long tons (610,000 kg) of coal, cargo and seven passengers on board. Brunel himself missed this initial crossing, having been injured during a fire aboard the ship as she was returning from fitting out in London. As the fire delayed the launch several days, the Great Western missed its opportunity to claim title as the first ship to cross the Atlantic under steam power alone. Even with a four-day head start, the competing Sirius arrived only one day earlier and its crew was forced to burn cabin furniture, spare yards and one mast for fuel. In contrast, the Great Western crossing of the Atlantic took 15 days and five hours, and the ship arrived at her destination with a third of its coal still remaining, demonstrating that Brunel's calculations were correct. The Great Western had proved the viability of commercial transatlantic steamship service, which led the Great Western Steamboat Company to use her in regular service between Bristol and New York from 1838 to 1846. She made 64 crossings, and was the first ship to hold the Blue Riband with a crossing time of 13 days westbound and 12 days 6 hours eastbound. The service was commercially successful enough for a sister ship to be required, which Brunel was asked to design.

Brunel had become convinced of the superiority of propeller-driven ships over paddle wheels. After tests conducted aboard the propeller-driven steam tug Archimedes, he incorporated a large six-bladed propeller into his design for the 322-foot (98 m) Great Britain, which was launched in 1843. Great Britain is considered the first modern ship, being built of metal rather than wood, powered by an engine rather than wind or oars, and driven by propeller rather than paddle wheel. She was the first iron-hulled, propeller-driven ship to cross the Atlantic Ocean.
Her maiden voyage was made in August and September 1845, from Liverpool to New York. In 1846, she was run aground at Dundrum, County Down. She was salvaged and employed in the Australian service. And today she is fully preserved and open to the public in Bristol, UK.
In 1852 Brunel turned to a third ship, larger than her predecessors, intended for voyages to India and Australia. The Great Eastern (originally dubbed Leviathan) was cutting-edge technology for her time: almost 700 ft (210 m) long, fitted out with the most luxurious appointments, and capable of carrying over 4,000 passengers. Great Eastern was designed to cruise non-stop from London to Sydney and back (since engineers of the time misunderstood that Australia had no coal reserves), and she remained the largest ship built until the start of the 20th century. Like many of Brunel's ambitious projects, the ship soon ran over budget and behind schedule in the face of a series of technical problems. vb The ship has been portrayed as a white elephant, but it has been argued by David P. Billington that in this case Brunel's failure was principally one of economics—his ships were simply years ahead of their time. His vision and engineering innovations made the building of large-scale, propeller-driven, all-metal steamships a practical reality, but the prevailing economic and industrial conditions meant that it would be several decades before transoceanic steamship travel emerged as a viable industry.

Great Eastern
was built at John Scott Russell’s Napier Yard in London, and after two trial trips in 1859, set forth on her maiden voyage from Southampton to New York on 17 June 1860. Though a failure at her original purpose of passenger travel, she eventually found a role as an oceanic telegraph cable-layer . Under Captain Sir James Anderson, the Great Eastern played a significant role in laying the first lasting transatlantic cable, which enabled telecommunication between Europe and North America.
http://en.wikipedia.org/wiki/Isambard_Kingdom_Brunel

No comments:

Post a Comment