Monday, January 27, 2014

Strength of Materials

Mechanics of materials, also called strength of materials, is a subject which deals with the behavior of solid objects subject to stresses and strains. The complete theory began with the consideration of the behavior of one and two dimensional members of structures, whose states of stress can be approximated as two dimensional, and was then generalized to three dimensions to develop a more complete theory of the elastic and plastic behavior of materials. An important founding pioneer in mechanics of materials was Stephen Timoshenko.

The study of strength of materials often refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength,Young’s Modulus, and Poisson’s ratio; in addition the mechanical element's macroscopic properties (geometric properties), such as it length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered.

Definition
In materials science, the strength of a material is its ability to withstand an applied stress without failure. The field of strength of materials deals with forces and deformations that result from their acting on a material. A load applied to a mechanical member will induce internal forces within the member called stresses when those forces are expressed on a unit basis. The stresses acting on the material cause deformation of the material. Deformation of the material is called strain when those deformations too are placed on a unit basis. The applied loads may be axial (tensile or compressive), or shear. The stresses and strains that develop within a mechanical member must be calculated in order to assess the load capacity of that member. This requires a complete description of the geometry of the member, its constraints, the loads applied to the member and the properties of the material of which the member is composed. With a complete description of the loading and the geometry of the member, the state of stress and of state of strain at any point within the member can be calculated. Once the state of stress and strain within the member is known, the strength (load carrying capacity) of that member, its deformations (stiffness qualities), and its stability (ability to maintain its original configuration) can be calculated. The calculated stresses may then be compared to some measure of the strength of the member such as its material yield or ultimate strength. The calculated deflection of the member may be compared to a deflection criteria that is based on the member's use. The calculated buckling load of the member may be compared to the applied load. The calculated stiffness and mass distribution of the member may be used to calculate the member's dynamic response and then compared to the acoustic environment in which it will be used.

Material strength refers to the point on the engineering stress-strain curve (yield stress) beyond which the material experiences deformations that will not be completely reversed upon removal of the loading and as a result the member will have a permanent deflection. The ultimate strength refers to the point on the engineering stress-strain curve corresponding to the stress that produces fracture.

Failure Theories
There are four important failure theories: maximum shear stress theory, maximum normal stress theory, maximum strain energy theory, and maximum distortion energy theory. Out of these four theories of failure, the maximum normal stress theory is only applicable for brittle materials, and the remaining three theories are applicable for ductile materials. Of the latter three, the distortion energy theory provides most accurate results in majority of the stress conditions. The strain energy theory needs the value of Poisson’s ratio of the part material, which is often not readily available. The maximum shear stress theory is conservative. For simple unidirectional normal stresses all theories are equivalent, which means all theories will give the same result.
  • Maximum Shear stress Theory- This theory postulates that failure will occur if the magnitude of the maximum shear stress in the part exceeds the shear strength of the material determined from uniaxial testing.
  • Maximum normal stress theory - This theory postulates that failure will occur if the maximum normal stress in the part exceeds the ultimate tensile stress of the material as determined from uniaxial testing. This theory deals with brittle materials only. The maximum tensile stress should be less than or equal to ultimate tensile stress divided by factor of safety. The magnitude of the maximum compressive stress should be less than ultimate compressive stress divided by factor of safety.
  • Maximum strain energy theory - This theory postulates that failure will occur when the strain energy per unit volume due to the applied stresses in a part equals the strain energy per unit volume at the yield point in uniaxial testing.
  • Maximum distortion energy theory - This theory is also known as shear energy theory or von Mises hencky theory. This theory postulates that failure will occur when the distortion energy per unit volume due to the applied stresses in a part equals the distortion energy per unit volume at the yield point in uniaxial testing. The total elastic energy due to strain can be divided into two parts: one part causes change in volume, and the other part causes change in shape. Distortion energy is the amount of energy that is needed to change the shape.
  • Fracture mechanics was established by Alan Arnold Griffith and George Rankine Irwin. This important theory is also known as numeric conversion of toughness of material in the case of crack existence.
  • Fractology was proposed by Takeo Yokobori because each fracture law, including creep rupture criterion, must be combined nonlinially.
  http://en.wikipedia.org/wiki/Strength_of_materials

No comments:

Post a Comment