Neutrons Find “Missing” Magnetism of Plutonium
OAK RIDGE , Tenn. , July 10, 2015—Groundbreaking work at
two Department of Energy national laboratories has confirmed plutonium’s
magnetism, which scientists have long theorized but have never been able to
experimentally observe. The advances that enabled the discovery hold great
promise for materials, energy and computing applications.
Plutonium was first produced in 1940 and its unstable nucleus allows it to undergo fission, making it useful for nuclear fuels as well as for nuclear weapons. Much less known, however, is that the electronic cloud surrounding the plutonium nucleus is equally unstable and makes plutonium the most electronically complex element in the periodic table, with intriguingly intricate properties for a simple elemental metal.
While conventional theories have successfully explained plutonium’s complex structural properties, they also predict that plutonium should order magnetically. This is in stark contrast with experiments, which had found no evidence for magnetic order in plutonium.
Finally, after seven decades, this scientific mystery on plutonium’s “missing” magnetism has been resolved. Using neutron scattering, researchers from the Department of Energy’sLos Alamos and
Oak Ridge (ORNL) national laboratories have made the first direct measurements
of a unique characteristic of plutonium’s fluctuating magnetism. In a recent paper in
the journal Science Advances, Marc Janoschek from Los
Alamos , the paper’s lead scientist, explains that plutonium is not
devoid of magnetism, but in fact its magnetism is just in a constant state of
flux, making it nearly impossible to detect.
“Plutonium sort of exists between two extremes in its electronic configuration—in what we call a quantum mechanical superposition,” Janoschek said. “Think of the one extreme where the electrons are completely localized around the plutonium ion, which leads to a magnetic moment. But then the electrons go to the other extreme where they become delocalized and are no longer associated with the same ion anymore.”
Using neutron measurements made on the ARCS instrument at ORNL’s Spallation Neutron Source, a DOE Office of Science User Facility, Janoschek and his team determined that the fluctuations have different numbers of electrons in plutonium’s outer valence shell—an observation that also explains abnormal changes in plutonium’s volume in its different phases.
Plutonium was first produced in 1940 and its unstable nucleus allows it to undergo fission, making it useful for nuclear fuels as well as for nuclear weapons. Much less known, however, is that the electronic cloud surrounding the plutonium nucleus is equally unstable and makes plutonium the most electronically complex element in the periodic table, with intriguingly intricate properties for a simple elemental metal.
While conventional theories have successfully explained plutonium’s complex structural properties, they also predict that plutonium should order magnetically. This is in stark contrast with experiments, which had found no evidence for magnetic order in plutonium.
Finally, after seven decades, this scientific mystery on plutonium’s “missing” magnetism has been resolved. Using neutron scattering, researchers from the Department of Energy’s
“Plutonium sort of exists between two extremes in its electronic configuration—in what we call a quantum mechanical superposition,” Janoschek said. “Think of the one extreme where the electrons are completely localized around the plutonium ion, which leads to a magnetic moment. But then the electrons go to the other extreme where they become delocalized and are no longer associated with the same ion anymore.”
Using neutron measurements made on the ARCS instrument at ORNL’s Spallation Neutron Source, a DOE Office of Science User Facility, Janoschek and his team determined that the fluctuations have different numbers of electrons in plutonium’s outer valence shell—an observation that also explains abnormal changes in plutonium’s volume in its different phases.
No comments:
Post a Comment