Thursday, November 8, 2012

Mysterious Loss of the USS Thresher

The second USS Thresher (SSN-593) was the lead boat of her class of nuclear-powered attack submarines in the United States Navy. Her loss at sea during deep-diving tests in 1963 is often considered a watershed event in the implementation of the rigorous submarine safety program SUBSAFE.

The contract to build Thresher was awarded to Portsmouth Naval Shipyard on 15 January 1958, and her keel was laid on 28 May 1958. She was launched on 9 July 1960, was sponsored by Mrs. Frederick B. Warder (wife of the famous Pacific War skipper), and was commissioned on 3 August 1961, Commander Dean L. Axene commanding. In 1963 the submarine sank off the coast of Cape Cod, Massachusetts, with no survivors.

Sinking
On 9 April 1963, after the completion of this work, Thresher, now commanded by Lieutenant Commander John Wesley Harvey, began post-overhaul trials. Accompanied by the submarine rescue ship Skylark, she sailed to an area some 190 nmi (220 mi; 350 km) east of Cape Cod, Massachusetts, and on the morning of 10 April started deep-diving tests. As Thresher neared her test depth, Skylark received garbled communications over underwater telephone indicating "... minor difficulties, have positive up-angle, attempting to blow." When Skylark received no further communication, surface observers gradually realized Thresher had sunk. Publicly it took some days to announce that all 129 officers, crewmen, and military and civilian technicians aboard were presumed dead.

After an extensive underwater search using the bathyscaphe Trieste, oceanographic ship Mizar and other ships, Thresher's remains were located on the sea floor, some 8,400 ft (2,600 m) below the surface, in six major sections. The majority of the debris had spread over an area of about 134,000 m2 (160,000 sq yd). The major sections were the sail, sonar dome, bow section, engineering spaces section, operations spaces section, and the stern planes.

Deep sea photography, recovered artifacts, and an evaluation of her design and operational history permitted a Court of Inquiry to conclude Thresher had probably suffered the failure of a joint in a salt water piping system, which relied heavily on silver brazing instead of welding; earlier tests using ultrasound equipment found potential problems with about 14% of the tested brazed joints, most of which were determined not to pose a risk significant enough to require a repair. High-pressure water spraying from a broken pipe joint may have shorted out one of the many electrical panels, which in turn caused a shutdown ("scram") of the reactor, with a subsequent loss of propulsion. The inability to blow the ballast tanks was later attributed to excessive moisture in the sub's high-pressure air flasks, which froze and plugged the flasks' flowpaths while passing through the valves. This was later simulated in dock-side tests on Thresher's sister sub, Tinosa. During a test to simulate blowing ballast at or near test depth, ice formed on strainers installed in valves; the flow of air lasted only a few seconds. Air driers were later retrofitted to the high pressure air compressors, beginning with Tinosa, to permit the emergency blow system to operate properly.

Unlike diesel submarines, nuclear submarines rely on speed and deck angle rather than deballasting to surface; they are "driven" at an angle towards the surface. Ballast tanks were almost never blown at depth, and to do so could cause the sub to rocket to the surface out of control. Normal procedure was to drive the sub to periscope depth, raise the periscope to verify the area was clear, then blow the tanks and surface the sub.

At the time, reactor-plant operating procedures precluded a rapid reactor restart following a scram, or even the ability to use steam remaining in the secondary system to "drive" the sub to the surface. After a scram, standard procedure was to isolate the main steam system, cutting off the flow of steam to the turbines providing propulsion and electricity. This was done to prevent an over-rapid cool-down of the reactor. Thresher's Reactor Control Officer, Lieutenant Raymond McCoole, was not at his station in the maneuvering room, or indeed on the boat, during the fatal dive. McCoole was at home caring for his wife who had been injured in a household accident—he had been all but ordered ashore by a sympathetic Commander Harvey. McCoole's trainee, Jim Henry, fresh from nuclear power school, probably followed standard operating procedures and gave the order to isolate the steam system after the scram, even though Thresher was at or slightly below its maximum depth and was taking on water. Once closed, the large steam system isolation valves could not be reopened quickly. Reflecting on the situation in later life, McCoole was sure he would have delayed shutting the valves, thus allowing the boat to "answer bells" and drive itself to the surface, despite the flooding in the engineering spaces. Admiral Rickover later changed the procedure, allowing steam to be withdrawn from the secondary system in limited quantities for several minutes following a scram.

In a dockside simulation of flooding in the engine room, held before Thresher sailed, it took the watch in charge 20 minutes to isolate a simulated leak in the auxiliary seawater system. At test depth, taking on water, and with the reactor shut down, Thresher would not have had 20 minutes to recover. Even after isolating a short-circuit in the reactor controls it would have taken nearly 10 minutes to restart the plant.
Thresher likely imploded at a depth of 1,300–2,000 ft (400–610 m).

The Navy has periodically monitored the environmental conditions of the site since the sinking and has reported the results in an annual public report on environmental monitoring for U.S. Naval nuclear-powered craft. These reports provide specifics on the environmental sampling of sediment, water, and marine life which were taken to ascertain whether Thresher's nuclear reactor has had a significant effect on the deep ocean environment. The reports also explain the methodology for conducting deep sea monitoring from both surface vessels and submersibles. The monitoring data confirms that there has been no significant effect on the environment. Nuclear fuel in the submarine remains intact.

According to newly declassified information, the Navy sent Commander (Dr.) Robert Ballard, the oceanographer credited with locating the wreck of RMS Titanic, on a secret mission to map and collect visual data on both Thresher and Scorpion wrecks. The Navy used Ballard's search for Titanic as a screen to hide the mission. Ballard approached the Navy in 1982 for funding to find Titanic with his new deep-diving robot submersible. The Navy saw the opportunity and granted him the money on the condition he first inspect the two submarine wrecks. Ballard's robotic survey discovered that Thresher had sunk so deep it imploded, turning into thousands of pieces. The only recoverable piece was a foot of marled pipe. His 1985 search for Scorpion, which was thought to be a victim of a Soviet attack, revealed such a large debris field that it looked "as though it had been put through a shredding machine." Once the two wrecks had been visited, and the radioactive threat from both was established as small, Ballard was able to search for Titanic. Due to dwindling funds, he had just 12 days to do so, but he used the same debris-field search techniques he had used for the two subs, which worked, and Titanic was found.
U.S. submarine classes are generally known by the hull number of the lead ship of the class–for instance, Los Angeles-class boats are called "688s" because the hull number of USS Los Angeles was SSN-688. The Thresher-class boats should thus be called "593s", but since Thresher's sinking they have been referred to as "594s" (Permit class).

Time Line of Disaster -- (Time) Event
07:47 Thresher begins its descent to the test depth of 1,000 ft (300 m).

07:52 Thresher levels off at 400 ft (120 m), contacts the surface, and the crew inspects the ship for leaks. None are found.

08:09 Commander Harvey reports reaching half the test depth.

08:25 Thresher reaches 1,000 ft (300 m).

09:02 Thresher is cruising at just a few knots (subs normally moved slowly and cautiously at great depths, lest a sudden jam of the diving planes send the ship below test depth in a matter of seconds.) The boat is descending in slow circles, and announces to Skylark she is turning to "Corpen [course] 090." At this point, transmission quality from Thresher begins to noticeably degrade, possibly as a result of thermoclines.

09:09 It is believed a brazed pipe-joint ruptures in the engine room. The crew would have attempted to stop the leak; at the same time, the engine room would be filling with a cloud of mist. Under the circumstances, Commander Harvey's likely decision would have been to order full speed, full rise on the fairwater planes, and blowing main ballast in order to surface. The pressurized air rapidly expanding in the pipes cools down, condensing moisture and depositing it on strainers installed in the system to protect the moving parts of the valves; in only a few seconds the moisture freezes, clogging the strainers and blocking the air flow, halting the effort to blow ballast. Water leaking from the broken pipe most likely causes short circuits leading to an automatic shutdown of the ship's reactor, causing a loss of propulsion. The logical action at this point would have been for Harvey to order propulsion shifted to a battery-powered backup system. As soon as the flooding was contained, the engine room crew would have begun to restart the reactor, an operation that would be expected to take at least 7 minutes.

09:12 Skylark pages Thresher on the underwater telephone: "Gertrude check, K [over]." With no immediate response (although Skylark is still unaware of the conditions aboard Thresher), the signal "K" is repeated twice.

09:13 Harvey reports status via underwater telephone. The transmission is garbled, though some words are recognizable: "[We are] experiencing minor difficulty, have positive up-angle, attempting to blow." The submarine, growing heavier from water flooding the engine room, continues its descent, probably tail-first. Another attempt to empty the ballast tanks is performed, again failing due to the formation of ice. Officers on Skylark could hear the hiss of compressed air over the loudspeaker at this point.

09:14 Skylark acknowledges with a brisk, "Roger, out," awaiting further updates from the SSN. A follow-up message, "No contacts in area," is sent to reassure Thresher she can surface quickly, without fear of collision, if required.

09:15 Skylark queries Thresher about her intentions: "My course 270 degrees. Interrogative range and bearing from you." There is no response, and Skylark's captain, Lieutenant Commander Hecker, sends his own gertrude message to the submarine, "Are you in control?"

09:16 Skylark picks up a garbled transmission from Thresher, transcribed in the ship's log as "900 N." [The meaning of this message is unclear, and was not discussed at the enquiry; it may have indicated the submarine's depth and course, or it may have referred to a Navy "event number" (1000 indicating loss of submarine), with the "N" signifying a negative response to the query from Skylark, "Are you in control?"]

09:17 A second transmission is received, with the partially recognizable phrase "exceeding test depth...." The leak from the broken pipe grows with increased pressure.

09:18 Skylark detects a high-energy low-frequency noise with characteristics of an implosion.

09:20 Skylark continues to page Thresher, repeatedly calling for a radio check, a smoke bomb, or some other indication of the boat's condition.

11:04 Skylark attempts to transmit a message to COMSUBLANT (Commander, Submarines, Atlantic Fleet): "Unable to communicate with Thresher since 0917R. Have been calling by UQC voice and CW, QHB, CW every minute. Explosive signals every 10 minutes with no success. Last transmission received was garbled. Indicated Thresher was approaching test depth.... Conducting expanding search." Radio problems meant that COMSUBLANT did not receive and respond to this message until 12:45.

Hecker initiated "Event SUBMISS [loss of a submarine]" procedures at 11:21, and continued to repeatedly hail Thresher until after 17:00.

http://en.wikipedia.org/wiki/USS_Thresher_(SSN-593)

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Note by the Blog Author

The Thresher sank at the height of the Cold War, not long after the Cuban Missile Crisis. For many years the U.S. Navy was deeply suspicious that this submarine was sabotaged by the Soviet Union.

Years of testing and underwater salvage attempts have gradually altered the Navy’s view of probable cause to valves in a new class of submarine. The Thresher thus represents a landmark in submarine safety studies and improvements.

No comments:

Post a Comment