Friday, April 11, 2014

All about Mouthwash

Mouthwash, mouth rinse, oral rinse or mouth bath, is a liquid which is held in the mouth passively or swilled around the mouth by contraction of the perioral muscles and/or movement of the head, and may be gargled, where the head is tilted back and the liquid bubbled at the back of the mouth.

Usually mouthwashes are an antiseptic solution intended to reduce the microbial load in the oral cavity, although other mouthwashes might be given for other reasons such as for their analgesic, anti-inflammatory or anti-fungal action.

The most common use of mouthwash is commercial antiseptics which are used at home as part of an oral hygiene routine. Some manufacturers of mouthwash claim that antiseptic and anti-plaque mouth rinse kill the bacterial plaque which causes cavities, gingivitis, and bad breath. Anti-cavity mouth rinse uses fluoride to protect against tooth decay. It is, however, generally agreed that the use of mouthwash does not eliminate the need for both brushing and flossiung.  The American Dental Association asserts that regular brushing and proper flossing are enough in most cases, although they approve many mouthwashes that do not contain alcohol (in addition to regular dental check-ups).  Another common use of mouthwash is prior to and after oral surgery procedures such as tooth extraction.

Use

Common use involves rinsing the mouth with about 20ml (2/3 fl oz) of mouthwash. The wash is typically swished or gargled for about half a minute and then spit out. Most companies suggest not drinking water immediately after using mouthwash. In some brands, the expectorate is stained, so that one can see the bacteria and debris.  Mouthwash should not be used immediately after brushing the teeth so as not to wash away the beneficial fluoride residue left from the toothpaste. Similarly, the mouth should not be rinsed out with water after brushing. Patients were told to "spit don't rinse" after toothbrushing as part of an National Health Service campaign in the UK.

Gargling is where the head is tilted back, allowing the mouthwash to sit in the back of the mouth while exhaling, causing the liquid to bubble. Gargling is practiced in Japan for perceived prevention of viral infection. One commonly used way is with infusions or tea.  In some cultures, gargling is usually done in private, typically in a bathroom at a sink so the liquid can be rinsed away.

History

The first known references to mouth rinsing is in Ayurveda and Chinese, about 2700 BC, for treatment of gingivitis.  Later, in the Greek and Roman periods, mouth rinsing following mechanical cleansing became common among the upper classes, and Hippocrates recommended a mixture of salt, alum, and vinegar. The Jewish Talmud, dating back about 1800 years, suggests a cure for gum ailments containing "dough water" and olive oil.

Before Europeans came to the Americas, Native North American and Mesoamerican cultures used mouthwashes, often made from plants such as Coptis trifolia.  Indeed Aztec  dentistry was more advanced than European dentistry of the age.  Peoples of the Americas used salt water mouthwashes for sore throats, and other mouthwashes for problems such as teething and mouth ulcers.

Anton van Leeuwenhoek, the famous 17th century microscopist, discovered living organisms (living, because they were motile) in deposits on the teeth (what we now call dental plaque). He also found organisms in water from the canal next to his home in Delft. He experimented with samples by adding vinegar or brandy and found that this resulted in the immediate immobilization or killing of the organisms suspended in water. Next he tried rinsing the mouth of himself and somebody else with a mouthwash containing vinegar or brandy and found that living organisms remained in the dental plaque. He concluded—correctly—that the mouthwash either did not reach, or was not present long enough, to kill the plaque organisms.

That remained the state of affairs until the late 1960s when Harald Loe (at the time a professor at the Royal Dental College in Aarhus, Denmark) demonstrated that chlorhexidine compound could prevent the build-up of dental plaque. The reason for chlorhexidine effectiveness is that it strongly adheres to surfaces in the mouth and thus remains present in effective concentrations for many hours.

Since then commercial interest in mouthwashes has been intense and several newer products claim effectiveness in reducing the build-up in dental plaque and the associated severity of gingivitis, in addition to fighting bad breath. Many of these solutions aim to control the Volatile Sulfur Compound (VSC)-creating anaerobic bacteria that live in the mouth and excrete substances that lead to bad breath and unpleasant mouth taste.

Research

Research in the field of microbiomes shows that only a limited set of microbes cause tooth decay, with most of the bacteria in the human mouth being harmless. Focused attention on cavity-causing bacteria such as Streptococcus mutans has led research into new mouthwash treatments that prevent these bacteria from initially growing. While current mouthwash treatments must be used with a degree of frequency to prevent this bacteria from regrowing, future treatments could provide a viable long term solution.

No comments:

Post a Comment