Wednesday, May 15, 2013

Earth's Rarest Naturally Occurring Element

Here is a deceptively simple question.

There are several radioactive elements which exist only because they represent a heavy metal that has been bombarded with energy. This "series" of elements is properly identified on the periodic table of the elements.
The other elements are naturally occurring here on the earth’s surface.

So the simple question is, "What is the rarest element naturally occurring on earth?"

My guess would have been plutonium or perhaps rhodium. Those answers are wrong.

The right answer is astatine.

= = = = = = = = = = = = = from Wikipedia: = = = = = = = = = = = =

Astatine is a radioactive chemical element with the chemical symbol At and atomic number 85. It occurs on Earth only as the result of the radioactive decay of certain heavier elements. All of its isotopes are short-lived; the most stable is astatine-210, with a half-life of 8.1 hours. Accordingly, much less is known about astatine than most other elements. The observed properties are consistent with it being a heavier analog of iodine; many other properties have been estimated based on this resemblance.

Elemental astatine has never been viewed, because a mass large enough to be seen (by the naked human eye) would be immediately vaporized by the heat generated by its own radioactivity. Astatine may be dark, or it may have a metallic appearance and be a semiconductor, or it may even be a metal. It is likely to have a much higher melting point than does iodine, on par with those of bismuth and polonium. Chemically, astatine behaves more or less as a halogen [in the same group with fluorine, chlorine, bromine, and iodine], being expected to form ionic astatides with alkali or alkaline earth metals; it is known to form covalent compounds with nonmetals, including other halogens. It does, however, also have a notable cationic chemistry that distinguishes it from the lighter halogens. The second longest-lived isotope of astatine, astatine-211, is the only one currently having any commercial application, being employed in medicine to diagnose and treat some diseases via its emission of alpha particles (helium-4 nuclei). Only extremely small quantities are used, however, due to its intense radioactivity.

The element was first produced by Dale R. Corson, Kenneth Ross MacKenzie, and Emilio segre at the University of California, Berkeley in 1940. They named the element "astatine", a name coming from the great instability of the synthesized matter (the source Greek word αστατος (astatos) means "unstable"). Three years later it was found in nature, although it is the least abundant element in the Earth's crust among the non-transuranic elements, with an estimated total amount of less than 28 grams (1 oz) at any given time. Six astatine isotopes, with mass numbers of 214 to 219, are present in nature as the products of various decay routes of heavier elements, but neither the most stable isotope of astatine (with mass number 210) nor astatine-211 (which is used in medicine) is produced naturally.

Characteristics
Astatine is an extremely radioactive element; all its isotopes have half-lives of less than 12 hours, decaying into bismuth, poloniu, radon, or other astatine isotopes. Among the first 101 elements in the periodic table, only francium [the most reactive of the metals] is less stable.


The bulk properties of astatine are not known with any great degree of certainty. Research is limited by its short half-life, which prevents the creation of weighable quantities. A visible piece of astatine would be immediately and completely vaporized due to the heat generated by its intense radioactivity. Astatine is usually classified as either a nonmetal or a metalloid. However, metal formation for condensed-phase astatine has also been suggested.

Uses and Precautions
The newly formed astatine-211 is important in nuclear medicine. Once produced, astatine must be used quickly, as it decays with a half-life of 7.2 hours; this is, however, long enough to permit multi-step labeling strategies. Astatine-211 can be used for targeted alpha particle radiotherapy, since it decays either via emission of an alpha particle (to bismuth-207), or via electron capture (to an extremely short-lived nuclide of polonium-211, which itself undergoes further alpha decay).
In a manner similar to iodine, astatine is preferentially concentrated in the thyroid gland, although to a lesser extent. However, it tends to concentrate in the liver in the form of a radiocolloid if it is released into the systemic circulation. The principal medicinal difference between astatine-211 and iodine-131 (a radioactive iodine isotope also used in medicine) is that astatine does not emit high energy beta particles (electrons), as does iodine-131. Beta particles have considerably greater penetrating power through tissues than do the much heavier alpha particles. While an average energy alpha particle released by decay of astatine-211 can travel up to 70 µm through the surrounding tissues, an average energy beta particle emitted by iodine-131 can travel nearly 30 times as far, to about 2 mm. Thus, using astatine-211 instead of iodine-131 enables the thyroid to be dosed appropriately, while the neighboring parathyroid gland is spared. The short half-life and limited penetrating power of its radiation through tissues renders astatine generally preferable to iodine-131 when used in diagnosis as well.


Experiments in rats and monkeys, however, suggest that astatine causes much greater damage to the thyroid gland than does iodine-131, with repetitive injection of the nuclide resulting in necrosis and cell dysplasia within the gland. These experiments also suggest that astatine could cause damage to the thyroid of any organism. Early research suggested that injection of lethal quantities of astatine caused morphological changes in breast tissue (although not other tissues); however, this conclusion currently remains controversial.

http://en.wikipedia.org/wiki/Astatine

No comments:

Post a Comment