Friday, June 1, 2018

Powerful Nickel Nuclear Battery

Prototype Nuclear Battery Packs
Ten Times more Power

May 31, 2018 -- Russian researchers from the Moscow Institute of Physics and Technology (MIPT), the Technological Institute for Superhard and Novel Carbon Materials (TISNCM), and the National University of Science and Technology MISIS have optimized the design of a nuclear battery generating power from the beta decay of nickel-63, a radioactive isotope. Their new battery prototype packs about 3,300 milliwatt-hours of energy per gram, which is more than in any other nuclear battery based on nickel-63, and 10 times more than the specific energy of commercial chemical cells. The paper was published in the journal Diamond and Related Materials.

Conventional batteries

Ordinary batteries powering clocks, flashlights, toys, and other compact autonomous electrical devices use the energy of so-called redox chemical reactions. In them, electrons are transferred from one electrode to another via an electrolyte. This gives rise to a potential difference between the electrodes. If the two battery terminals are then connected by a conductor, electrons start flowing to remove the potential difference, generating an electric current. Chemical batteries, also known as galvanic cells, are characterized by a high power density — that is, the ratio between the power of the generated current and the volume of the battery. However, chemical cells discharge in a relatively short time, limiting their applications in autonomous devices. Some of these batteries, called accumulators, are rechargeable, but even they need to be replaced for charging. This may be dangerous, as in the case of a cardiac pacemaker, or even impossible, if the battery is powering a spacecraft.

Nuclear batteries: History

Fortunately, chemical reactions are just one of the possible sources of electric power. Back in 1913, Henry Moseley invented the first power generator based on radioactive decay. His nuclear battery consisted of a glass sphere silvered on the inside with a radium emitter mounted at the center on an isolated electrode. Electrons resulting from the beta decay of radium caused a potential difference between the silver film and the central electrode. However, the idle voltage of the device was way too high — tens of kilovolts — and the current was too low for practical applications.

In 1953, Paul Rappaport proposed the use of semiconducting materials to convert the energy of beta decay into electricity. Beta particles — electrons and positrons — emitted by a radioactive source ionize atoms of a semiconductor, creating uncompensated charge carriers. In the presence of a static field of a p-n structure, the charges flow in one direction, resulting in an electric current. Batteries powered by beta decay came to be known as betavoltaics. The chief advantage of betavoltaic cells over galvanic cells is their longevity: Radioactive isotopes used in nuclear batteries have half-lives ranging from tens to hundreds of years, so their power output remains nearly constant for a very long time. Unfortunately, the power density of betavoltaic cells is significantly lower than that of their galvanic counterparts. Despite this, betavoltaics were in fact used in the ’70s to power cardiac pacemakers, before being phased out by cheaper lithium-ion batteries, even though the latter have shorter lifetimes.

Betavoltaic power sources should not be confused with radioisotope thermoelectric generators, or RTGs, which are also called nuclear batteries but operate on a different principle. Thermoelectric cells convert the heat released by radioactive decay into electricity using thermocouples. The efficiency of RTGs is only several percent and depends on temperature. But owing to their longevity and relatively simple design, thermoelectric power sources are widely used to power spacecraft such as the New Horizons probe and Mars rover Curiosity. RTGs were previously used on unmanned remote facilities such as lighthouses and automatic weather stations. However, this practice was abandoned, because used radioactive fuel was hard to recycle and leaked into the environment.

Ten times more power

A research team led by Vladimir Blank, the director of TISNCM and chair of nanostructure physics and chemistry at MIPT, came up with a way of increasing the power density of a nuclear battery almost tenfold. The physicists developed and manufactured a betavoltaic battery using nickel-63 as the source of radiation and
Schottky barrier-based diamond diodes for energy conversion. The prototype battery achieved an output power of about 1 microwatt, while the power density per cubic centimeter was 10 microwatts, which is enough for a modern artificial pacemaker. Nickel-63 has a half-life of 100 years, so the battery packs about 3,300 milliwatt-hours of power per 1 gram — 10 times more than electrochemical cells.


 


                                                               Nickel Nuclear Battery

The nuclear battery prototype consisted of 200 diamond converters interlaid with nickel-63 and stable nickel foil layers (figure 1). The amount of power generated by the converter depends on the thickness of the nickel foil and the converter itself, because both affect how many beta particles are absorbed. Currently available prototypes of nuclear batteries are poorly optimized, since they have excessive volume. If the beta radiation source is too thick, the electrons it emits cannot escape it. This effect is known as self-absorption. However, as the source is made thinner, the number of atoms undergoing beta decay per unit time is proportionally reduced. Similar reasoning applies to the thickness of the converter.

No comments:

Post a Comment