Charles Sanders Peirce (pronounced PURSS; September 10, 1839 – April 19, 1914) was an American philosopher, logician, mathematician, and scientist who is sometimes known as "the father of pragmatism". He was educated as a chemist and employed as a scientist for thirty years. Today he is appreciated largely for his contributions to logic, mathematics, philosophy, scientific methodology, semiotics, and for his founding of pragmatism.
Charles Sanders Peirce
An innovator in mathematics, statistics, philosophy, research methodology, and various sciences, Peirce considered himself, first and foremost, a logician. He made major contributions to logic, but logic for him encompassed much of that which is now called epistemology and philosophy of science. He saw logic as the formal branch of semiotics, of which he is a founder, which foreshadowed the debate among logical positivists and proponents of philosophy of language that dominated 20th century Western philosophy. Additionally, he defined the concept of abductive reasoning, as well as rigorously formulated mathematical induction and deductive reasoning. As early as 1886 he saw that logical operations could be carried out by electrical switching circuits. The same idea was used decades later to produce digital computers.
In 1934, the philosopher Paul Weiss called Peirce "the most original and versatile of American philosophers and America's greatest logician". Webster's Biographical Dictionary said in 1943 that Peirce was "now regarded as the most original thinker and greatest logician of his time". Keith Devlin similarly referred to Peirce as one of the greatest philosophers ever.
Works
Peirce's reputation rests largely on a number of academic papers published in American scientific and scholarly journals such as Proceedings of the American Academy of Arts and Sciences, the Journal of Speculative Philosophy, The Monist, Popular Science Monthly, the American Journal of Mathematics, Memoirs of the National Academy of Sciences, The Nation, and others. See Articles by Peirce, published in his lifetime for an extensive list with links to them online. The only full-length book (neither extract nor pamphlet) that Peirce authored and saw published in his lifetime was Photometric Researches (1878), a 181-page monograph on the applications of spectrographic methods to astronomy. While at Johns Hopkins, he edited Studies in Logic (1883), containing chapters by himself and his graduate students. Besides lectures during his years (1879–1884) as lecturer in Logic at Johns Hopkins, he gave at least nine series of lectures, many now published; see Lectures by Peirce.
After Peirce's death, Harvard University obtained from Peirce's widow the papers found in his study, but did not microfilm them until 1964. Only after Richard Robin (1967) catalogued this Nachlass did it become clear that Peirce had left approximately 1650 unpublished manuscripts, totaling over 100,000 pages, mostly still unpublished except on microfilm. On the vicissitudes of Peirce's papers, see Houser (1989). Reportedly the papers remain in unsatisfactory condition.
The first published anthology of Peirce's articles was the one-volume Chance, Love and Logic: Philosophical Essays, edited by Morris Raphael Cohen, 1923, still in print. Other one-volume anthologies were published in 1940, 1957, 1958, 1972, 1994, and 2009, most still in print. The main posthumous editions of Peirce's works in their long trek to light, often multi-volume, and some still in print, have included:
1931–1958: Collected Papers of Charles Sanders Peirce (CP), 8 volumes, includes many published works, along with a selection of previously unpublished work and a smattering of his correspondence. This long-time standard edition drawn from Peirce's work from the 1860s to 1913 remains the most comprehensive survey of his prolific output from 1893 to 1913. It is organized thematically, but texts (including lecture series) are often split up across volumes, while texts from various stages in Peirce's development are often combined, requiring frequent visits to editors' notes. Edited (1–6) by Charles Hartshorne and Paul Weiss and (7–8) by Arthur Burks, in print and online.
1975–1987: Charles Sanders Peirce: Contributions toThe Nation, 4 volumes, includes Peirce's more than 300 reviews and articles published 1869–1908 in The Nation. Edited by Kenneth Laine Ketner and James Edward Cook, online.
1976: The New Elements of Mathematics by Charles S. Peirce, 4 volumes in 5, included many previously unpublished Peirce manuscripts on mathematical subjects, along with Peirce's important published mathematical articles. Edited by Carolyn Eisele, back in print.
1977: Semiotic and Significs: The Correspondence between C. S. Peirce and Victoria Lady Welby (2nd edition 2001), included Peirce's entire correspondence (1903–1912) with Victoria, Lady Welby. Peirce's other published correspondence is largely limited to the 14 letters included in volume 8 of the Collected Papers, and the 20-odd pre-1890 items included so far in the Writings. Edited by Charles S. Hardwick with James Cook, out of print.
1982–now: Writings of Charles S. Peirce, A Chronological Edition (W), Volumes 1–6 & 8, of a projected 30. The limited coverage, and defective editing and organization, of the Collected Papers led Max Fisch and others in the 1970s to found the Peirce Edition Project (PEP), whose mission is to prepare a more complete critical chronological edition. Only seven volumes have appeared to date, but they cover the period from 1859 to 1892, when Peirce carried out much of his best-known work. Writings of Charles S. Peirce, 8 was published in November 2010; and work continues on Writings of Charles S. Peirce, 7, 9, and 11. In print and online.
1985: Historical Perspectives on Peirce's Logic of Science: A History of Science, 2 volumes. Auspitz has said, "The extent of Peirce's immersion in the science of his day is evident in his reviews in the Nation [...] and in his papers, grant applications, and publishers' prospectuses in the history and practice of science", referring latterly to Historical Perspectives. Edited by Carolyn Eisele, back in print.
1992: Reasoning and the Logic of Things collects in one place Peirce's 1898 series of lectures invited by William James. Edited by Kenneth Laine Ketner, with commentary by Hilary Putnam, in print.
1992–1998: The Essential Peirce (EP), 2 volumes, is an important recent sampler of Peirce's philosophical writings. Edited (1) by Nathan Hauser and Christian Kloesel and (2) by Peirce Edition Project editors, in print.
1997: Pragmatism as a Principle and Method of Right Thinking collects Peirce's 1903 Harvard "Lectures on Pragmatism" in a study edition, including drafts, of Peirce's lecture manuscripts, which had been previously published in abridged form; the lectures now also appear in The Essential Peirce, 2. Edited by Patricia Ann Turisi, in print.
2010: Philosophy of Mathematics: Selected Writings collects important writings by Peirce on the subject, many not previously in print. Edited by Matthew E. Moore, in print.
Mathematics
Peirce's most important work in pure mathematics was in logical and foundational areas. He also worked on linear algebra, matrices, various geometries, topology and Listing numbers, Bell numbers, graphs, the four-color problem, and the nature of continuity.
He worked on applied mathematics in economics, engineering, and map projections (such as the Peirce quincuncial projection), and was especially active in probability and statistics.
Discoveries
Peirce made a number of striking discoveries in formal logic and foundational mathematics, nearly all of which came to be appreciated only long after he died:
In 1860 he suggested a cardinal arithmetic for infinite numbers, years before any work by Georg Cantor (who completed his dissertation in 1867) and without access to Bernard Bolzano's 1851 (posthumous) Paradoxien des Unendlichen.
In 1880–1881 he showed how Boolean algebra could be done via a repeated sufficient single binary operation (logical NOR), anticipating Henry M. Sheffer by 33 years. (See also De Morgan's Laws.)
In 1881 he set out the axiomatization of natural number arithmetic, a few years before Richard Dedekind and Giuseppe Peano. In the same paper Peirce gave, years before Dedekind, the first purely cardinal definition of a finite set in the sense now known as "Dedekind-finite", and implied by the same stroke an important formal definition of an infinite set (Dedekind-infinite), as a set that can be put into a one-to-one correspondence with one of its proper subsets.
In 1885 he distinguished between first-order and second-order quantification. In the same paper he set out what can be read as the first (primitive) axiomatic set theory, anticipating Zermelo by about two decades (Brady 2000, pp. 132–33).
In 1886, he saw that Boolean calculations could be carried out via electrical switches, anticipating Claude Shannon by more than 50 years.
By the later 1890s he was devising existential graphs, a diagrammatic notation for the predicate calculus. Based on them are John F. Sowa's conceptual graphs and Sun-Joo Shin's diagrammatic reasoning.
The New Elements of Mathematics
Peirce wrote drafts for an introductory textbook, with the working title The New Elements of Mathematics, that presented mathematics from an original standpoint. Those drafts and many other of his previously unpublished mathematical manuscripts finally appeared in The New Elements of Mathematics by Charles S. Peirce (1976), edited by mathematician Carolyn Eisele.
Nature of mathematics
Peirce agreed with Auguste Comte in regarding mathematics as more basic than philosophy and the special sciences (of nature and mind). Peirce classified mathematics into three subareas: (1) mathematics of logic, (2) discrete series, and (3) pseudo-continua (as he called them, including the real numbers) and continua. Influenced by his father Benjamin, Peirce argued that mathematics studies purely hypothetical objects and is not just the science of quantity but is more broadly the science which draws necessary conclusions; that mathematics aids logic, not vice versa; and that logic itself is part of philosophy and is the science about drawing conclusions necessary and otherwise.
Mathematics of logic
Beginning with his first paper on the "Logic of Relatives" (1870), Peirce extended the theory of relations that Augustus De Morgan had just recently awakened from its Cinderella slumbers. Much of the mathematics of relations now taken for granted was "borrowed" from Peirce, not always with all due credit; on that and on how the young Bertrand Russell, especially his Principles of Mathematics and Principia Mathematica, did not do Peirce justice, see Anellis (1995). In 1918 the logician C. I. Lewis wrote, "The contributions of C.S. Peirce to symbolic logic are more numerous and varied than those of any other writer—at least in the nineteenth century." Beginning in 1940, Alfred Tarski and his students rediscovered aspects of Peirce's larger vision of relational logic, developing the perspective of relation algebra.
Relational logic gained applications. In mathematics, it influenced the abstract analysis of E. H. Moore and the lattice theory of Garrett Birkhoff. In computer science, the relational model for databases was developed with Peircean ideas in work of Edgar F. Codd, who was a doctoral student of Arthur W. Burks, a Peirce scholar. In economics, relational logic was used by Frank P. Ramsey, John von Neumann, and Paul Samuelson to study preferences and utility and by Kenneth J. Arrow in Social Choice and Individual Values, following Arrow's association with Tarski at City College of New York.
On Peirce and his contemporaries Ernst Schröder and Gottlob Frege, Hilary Putnam (1982) documented that Frege's work on the logic of quantifiers had little influence on his contemporaries, although it was published four years before the work of Peirce and his student Oscar Howard Mitchell. Putnam found that mathematicians and logicians learned about the logic of quantifiers through the independent work of Peirce and Mitchell, particularly through Peirce's "On the Algebra of Logic: A Contribution to the Philosophy of Notation" (1885), published in the premier American mathematical journal of the day, and cited by Peano and Schröder, among others, who ignored Frege. They also adopted and modified Peirce's notations, typographical variants of those now used. Peirce apparently was ignorant of Frege's work, despite their overlapping achievements in logic, philosophy of language, and the foundations of mathematics.
Peirce's work on formal logic had admirers besides Ernst Schröder:
- Philosophical algebraist William Kingdon Clifford and logician William Ernest Johnson, both British;
- The Polish school of logic and foundational mathematics, including Alfred Tarski;
- Arthur Prior, who praised and studied Peirce's logical work in a 1964 paper and in Formal Logic (saying on page 4 that Peirce "perhaps had a keener eye for essentials than any other logician before or since").
A philosophy of logic, grounded in his categories and semiotic, can be extracted from Peirce's writings and, along with Peirce's logical work more generally, is exposited and defended in Hilary Putnam (1982); the Introduction in Nathan Houser et al. (1997); and Randall Dipert's chapter in Cheryl Misak (2004).
Continua
Continuity and synechism are central in Peirce's philosophy: "I did not at first suppose that it was, as I gradually came to find it, the master-Key of philosophy".
From a mathematical point of view, he embraced infinitesimals and worked long on the mathematics of continua. He long held that the real numbers constitute a pseudo-continuum; that a true continuum is the real subject matter of analysis situs (topology); and that a true continuum of instants exceeds—and within any lapse of time has room for—any Aleph number (any infinite multitude as he called it) of instants.
In 1908 Peirce wrote that he found that a true continuum might have or lack such room. Jérôme Havenel (2008): "It is on 26 May 1908, that Peirce finally gave up his idea that in every continuum there is room for whatever collection of any multitude. From now on, there are different kinds of continua, which have different properties."
Probability and statistics
Peirce held that science achieves statistical probabilities, not certainties, and that spontaneity (absolute chance) is real (see Tychism on his view). Most of his statistical writings promote the frequency interpretation of probability (objective ratios of cases), and many of his writings express skepticism about (and criticize the use of) probability when such models are not based on objective randomization. Though Peirce was largely a frequentist, his possible world semantics introduced the "propensity" theory of probability before Karl Popper. Peirce (sometimes with Joseph Jastrow) investigated the probability judgments of experimental subjects, "perhaps the very first" elicitation and estimation of subjective probabilities in experimental psychology and (what came to be called) Bayesian statistics.
Peirce was one of the founders of statistics. He formulated modern statistics in "Illustrations of the Logic of Science" (1877–1878) and "A Theory of Probable Inference" (1883). With a repeated measures design, Charles Sanders Peirce and Joseph Jastrow introduced blinded, controlled randomized experiments in 1884 (Hacking 1990:205) (before Ronald A. Fisher). He invented optimal design for experiments on gravity, in which he "corrected the means". He used correlation and smoothing. Peirce extended the work on outliers by Benjamin Peirce, his father. He introduced terms "confidence" and "likelihood" (before Jerzy Neyman and Fisher). (See Stephen Stigler's historical books and Ian Hacking 1990).
Philosophy
It is not sufficiently recognized that Peirce's
career was that of a scientist, not a philosopher; and that during his lifetime
he was known and valued chiefly as a scientist, only secondarily as a logician,
and scarcely at all as a philosopher. Even his work in philosophy and logic
will not be understood until this fact becomes a standing premise of Peircean
studies.
— Max Fisch 1964
Peirce was a working scientist for 30 years, and arguably was a professional philosopher only during the five years he lectured at Johns Hopkins. He learned philosophy mainly by reading, each day, a few pages of Immanuel Kant's Critique of Pure Reason, in the original German, while a Harvard undergraduate. His writings bear on a wide array of disciplines, including mathematics, logic, philosophy, statistics, astronomy, metrology, geodesy, experimental psychology, economics, linguistics, and the history and philosophy of science. This work has enjoyed renewed interest and approval, a revival inspired not only by his anticipations of recent scientific developments but also by his demonstration of how philosophy can be applied effectively to human problems.
Peirce's philosophy includes (see below in related sections) a pervasive three-category system, belief that truth is immutable and is both independent from actual opinion (fallibilism) and discoverable (no radical skepticism), logic as formal semiotic on signs, on arguments, and on inquiry's ways—including philosophical pragmatism (which he founded), critical common-sensism, and scientific method—and, in metaphysics: Scholastic realism, e.g. John Duns Scotus, belief in God, freedom, and at least an attenuated immortality, objective idealism, and belief in the reality of continuity and of absolute chance, mechanical necessity, and creative love. In his work, fallibilism and pragmatism may seem to work somewhat like skepticism and positivism, respectively, in others' work. However, for Peirce, fallibilism is balanced by an anti-skepticism and is a basis for belief in the reality of absolute chance and of continuity, and pragmatism commits one to anti-nominalist belief in the reality of the general (CP 5.453–57).
For Peirce, First Philosophy, which he also called cenoscopy, is less basic than mathematics and more basic than the special sciences (of nature and mind). It studies positive phenomena in general, phenomena available to any person at any waking moment, and does not settle questions by resorting to special experiences. He divided such philosophy into (1) phenomenology (which he also called phaneroscopy or categorics), (2) normative sciences (esthetics, ethics, and logic), and (3) metaphysics.
https://en.wikipedia.org/wiki/Charles_Sanders_Peirce
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
See also https://aeon.co/essays/charles-sanders-peirce-was-americas-greatest-thinker
No comments:
Post a Comment