From: American Chemical Society
May 5, 2021 -- Coded messages in
invisible ink sound like something only found in espionage books, but in real
life, they can have important security purposes. Yet, they can be cracked if
their encryption is predictable. Now, researchers reporting in ACS
Applied Materials & Interfaces have printed complexly encoded data
with normal ink and a carbon nanoparticle-based invisible ink, requiring both
UV light and a computer that has been taught the code to reveal the correct
messages.
Even as electronic records advance,
paper is still a common way to preserve data. Invisible ink can hide classified
economic, commercial or military information from prying eyes, but many popular
inks contain toxic compounds or can be seen with predictable methods, such as
light, heat or chemicals. Carbon nanoparticles, which have low toxicity, can be
essentially invisible under ambient lighting but can create vibrant images when
exposed to ultraviolet (UV) light -- a modern take on invisible ink. In
addition, advances in artificial intelligence (AI) models -- made by networks
of processing algorithms that learn how to handle complex information -- can
ensure that messages are only decipherable on properly trained computers. So,
Weiwei Zhao, Kang Li, Jie Xu and colleagues wanted to train an AI model to
identify and decrypt symbols printed in a fluorescent carbon nanoparticle ink,
revealing hidden messages when exposed to UV light.
The researchers made carbon
nanoparticles from citric acid and cysteine, which they diluted with water to
create an invisible ink that appeared blue when exposed to UV light. The team
loaded the solution into an ink cartridge and printed a series of simple
symbols onto paper with an inkjet printer. Then, they taught an AI model,
composed of multiple algorithms, to recognize symbols illuminated by UV light
and decode them using a special codebook. Finally, they tested the AI model's
ability to decode messages printed using a combination of both regular red ink
and the UV fluorescent ink. With 100% accuracy, the AI model read the regular
ink symbols as "STOP," but when a UV light was shown on the writing,
the invisible ink illustrated the desired message "BEGIN." Because
these algorithms can notice minute modifications in symbols, this approach has
the potential to encrypt messages securely using hundreds of different
unpredictable symbols, the researchers say.
https://www.sciencedaily.com/releases/2021/05/210505111356.htm
No comments:
Post a Comment