Thursday, April 28, 2016

Shortwave Radio

Shortwave radio is radio transmission using shortwave frequencies, generally 1.6–30 MHz (187.4–10.0 m), just above the medium wave AM broadcast band.

Shortwave radio is used for long distance communication by means of skywave or skip propagation, in which the radio waves are reflected or refracted back to Earth from the ionosphere, allowing communication around the curve of the Earth. Shortwave radio is used for broadcasting of voice and music to shortwave listeners, and long-distance communication to ships and aircraft, or to remote areas out of reach of wired communication or other radio services. Additionally, it is used for two-way international communication by amateur radio enthusiasts for hobby, educational and emergency purposes.

Propagation Characteristics

Shortwave radio frequency energy is capable of reaching any location on the Earth as it is influenced by ionospheric reflection back to the earth by the ionosphere, (a phenomenon known as "skywave propagation"). A typical phenomenon of shortwave propagation is the occurrence of a skip zone (see first figure on that page) where reception fails. With a fixed working frequency, large changes in ionospheric conditions may create skip zones at night.

As a result of the multi-layer structure of the ionosphere, propagation often simultaneously occurs on different paths, scattered by the E or F region and with different numbers of hops, a phenomenon that may be disturbed for certain techniques. Particularly for lower frequencies of the shortwave band, absorption of radio frequency energy in the lowest ionospheric layer, the D layer, may impose a serious limit. This is due to collisions of electrons with neutral molecules, absorbing some of a radio frequency's energy and converting it to heat. Predictions of skywave propagation depend on:

  • The distance from the transmitter to the target receiver.
  • Time of day. During the day, frequencies higher than approximately 12 MHz can travel longer distances than lower ones. At night, this property is reversed.
  • With lower frequencies the dependence on the time of the day is mainly due to the lowest ionospheric layer, the D Layer, forming only during the day when photons from the sun break up atoms into ions and free electrons.
  • Season. During the winter months of the Northern or Southern hemispheres, the AM/MW broadcast band tends to be more favorable because of longer hours of darkness.
  • Solar flares produce a large increase in D region ionization so high, sometimes for periods of several minutes, all skywave propagation is nonexistent.

Advantages of Shortwave Radio

Shortwave does possess a number of advantages over newer technologies, including the following:

  • Difficulty of censoring programming by authorities in restrictive countries: unlike their relative ease in monitoring the Internet, government authorities face technical difficulties monitoring which stations (sites) are being listened to (accessed). For example, during the Russian coup against President Mikhail Gorbachev, when his access to communications was limited, Gorbachev was able to stay informed by means of the BBC World Service on shortwave.
  • Low-cost shortwave radios are widely available in all but the most repressive countries in the world. Simple shortwave regenerative receivers can be easily built with a few parts.
  • In many countries (particularly in most developing nations and in the Eastern bloc during the Cold War era) ownership of shortwave receivers has been and continues to be widespread (in many of these countries some domestic stations also used shortwave).
  • Many newer shortwave receivers are portable and can be battery-operated, making them useful in difficult circumstances. Newer technology includes hand-cranked radios which provide power without batteries.
  • Shortwave radios can be used in situations where Internet or satellite communications service is temporarily or long-term unavailable (or unaffordable).
  • Shortwave radio travels much farther than broadcast FM (88-108 MHz). Shortwave broadcasts can be easily transmitted over a distance of several thousands of kilometers, including from one continent to another.
  • Particularly in tropical regions, SW is somewhat less prone to interference from thunderstorms than medium wave radio, and is able to cover a large geographic area with relatively low power (and hence cost). Therefore, in many of these countries it is widely used for domestic broadcasting.
  • Very little infrastructure is required for long-distance two-way communications using shortwave radio. All one needs is a pair of transceivers, each with an antenna, and a source of energy (such as a battery, a portable generator, or the electrical grid). This makes shortwave radio one of the most robust means of communications, which can be disrupted only by interference or bad ionospheric conditions. Modern digital transmission modes such as MFSK and Olivia are even more robust, allowing successful reception of signals well below the noise floor of a conventional receiver.

Disadvantages of Short Wave Radio

Shortwave radio's benefits are sometimes regarded as being outweighed by its drawbacks, including:

  • In most Western countries, shortwave radio ownership is usually limited to true enthusiasts, since most new standard radios do not receive the shortwave band. Therefore, Western audiences are limited.
  • In the developed world, shortwave reception is very difficult in urban areas because of excessive noise from switched mode power adapters, fluorescent or led light sources, internet modems and routers, computers and many, many other sources of radio interference.

No comments:

Post a Comment