Saturday, November 5, 2016

Basics of Life Extension Science

Life extension science, also known as anti-aging medicine, indefinite life extension, experimental gerontology, and biomedical gerontology, is the study of slowing down or reversing the processes of aging to extend both the maximum and average lifespan. Some researchers in this area, and "life extensionists", "immortalists" or "longevists" (those who wish to achieve longer lives themselves), believe that future breakthroughs in tissue rejuvenation, stem cells, regenerative medicine, molecular repair, gene therapy, pharmaceuticals, and organ replacement (such as with artificial organs or xenotransplantations) will eventually enable humans to have indefinite lifespans (agerasia) through complete rejuvenation to a healthy youthful condition.

The sale of purported anti-aging products such as nutrition, physical fitness, skin care, hormone replacements, vitamins, supplements and herbs is a lucrative global industry, with the US market generating about $50 billion of revenue each year. Some medical experts state that the use of such products has not been proven to affect the aging process and many claims regarding the efficacy of these marketed products have been roundly criticized by medical experts, including the American Medical Association.

The ethical ramifications of life extension are debated by bioethicists.

Average and Maximum Lifespans in Humans and other Organisms

During the process of aging, an organism accumulates damage to its macromolecules, cells, tissues, and organs. Specifically, aging is characterized as and thought to be caused by "genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication." Oxidation damage to cellular contents caused by free radicals is believed to contribute to aging as well.

The longest a human has ever been proven to live is 122 years, the case of Jeanne Calment who was born in 1875 and died in 1997, whereas the maximum lifespan of a wildtype mouse, commonly used as a model in research on aging, is about three years. Genetic differences between humans and mice that may account for these different aging rates include differences in efficiency of DNA repair, antioxidant defenses, energy metabolism, proteostasis maintenance, and recycling mechanisms such as autophagy.

Average lifespan in a population is lowered by infant and child mortality, which are frequently linked to infectious diseases or nutrition problems. Later in life, vulnerability to accidents and age-related chronic disease such as cancer or cardiovascular disease play an increasing role in mortality. Extension of expected lifespan can often be achieved by access to improved medical care, vaccinations, good diet, exercise and avoidance of hazards such as smoking.

Maximum lifespan is determined by the rate of aging for a species inherent in its genes and by environmental factors. Widely recognized methods of extending maximum lifespan in model organisms such as nematodes, fruit flies, and mice include caloric restriction, gene manipulation, and administration of pharmaceuticals. Another technique uses evolutionary pressures such as breeding from only older members or altering levels of extrinsic mortality. Some animals such as hydra, planarian flatworms, and certain sponges, corals, and jellyfish do not die of old age and exhibit potential immortality.

Theoretically, extension of maximum lifespan in humans could be achieved by reducing the rate of aging damage by periodic replacement of damaged tissues, molecular repair or rejuvenation of deteriorated cells and tissues, reversal of harmful epigenetic changes, or the enhancement of telomerase enzyme activity.

Research geared towards life extension strategies in various organisms is currently under way at a number of academic and private institutions. Since 2009, investigators have found ways to increase the lifespan of nematode worms and yeast by 10-fold; the record in nematodes was achieved through genetic engineering and the extension in yeast by a combination of genetic engineering and caloric restriction. A 2009 review of longevity research noted: "Extrapolation from worms to mammals is risky at best, and it cannot be assumed that interventions will result in comparable life extension factors. Longevity gains from dietary restriction, or from mutations studied previously, yield smaller benefits to Drosophila than to nematodes, and smaller still to mammals. This is not unexpected, since mammals have evolved to live many times the worm's lifespan, and humans live nearly twice as long as the next longest-lived primate. From an evolutionary perspective, mammals and their ancestors have already undergone several hundred million years of natural selection favoring traits that could directly or indirectly favor increased longevity, and may thus have already settled on gene sequences that promote lifespan. Moreover, the very notion of a "life-extension factor" that could apply across taxa presumes a linear response rarely seen in biology."

Current Strategies and Issues 

  • Diets and supplements
  • Hormone treatments
  • Scientific controversy regarding anti-aging nutritional supplementation and medicine
  • Ethics and politics of anti-aging nutritional supplementation and medicine
  • Consumer motivations for using anti-aging products

1 comment: