In mathematics, a

Formal mathematics is based on

One method of proof, usable when there are only a finite number of cases that could lead to counterexamples, is known as "brute force": in this approach, all possible cases are considered and shown not to give counterexamples. Sometimes the number of cases is quite large, in which situation a brute-force proof may require as a practical matter the use of a computer algorithm to check all the cases: the validity of the 1976 and 1997 brute-force proofs of the four color theorem by computer was initially doubted, but was eventually confirmed in 2005 by theorem-proving software.

Not every conjecture ends up being proven true or false. The continuum hypothesis, which tries to ascertain the relative cardinality of certain infinite sets, was eventually shown to be undecidable (or independent) from the generally accepted set of axioms of set theory. It is therefore possible to adopt this statement, or its negation, as a new axiom in a consistent manner (much as we can takeEuclid 's
parallel postulate as either true or false).

In this case, if a proof uses this statement, researchers will often look for a new proof that

Sometimes a conjecture is called a

These "proofs", however, would fall apart if it turned out that the hypothesis was false, so there is considerable interest in verifying the truth or falsity of conjectures of this type.

**conjecture**is a conclusion or proposition based on incomplete information, for which no proof has been found. Conjectures such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (which was a conjecture until proven in 1995) have shaped much of mathematical history as new areas of mathematics are developed in order to prove them.
Resolution of Conjectures

**Proof**

Formal mathematics is based on

*provable*truth.**In mathematics, any number of cases supporting a conjecture, no matter how large, is insufficient for establishing the conjecture's veracity**, since a single counterexample would immediately bring down the conjecture. Mathematical journals sometimes publish the minor results of research teams having extended the search for a counterexample farther than previously done. For instance, the Collatz conjecture, which concerns whether or not certain sequences of integers terminate, has been tested for all integers up to 1.2 × 10^{12}(over a trillion). However, the failure to find a counterexample after extensive search does not constitute a proof that no counterexample exists nor that the conjecture is true, because the conjecture might be false but with a very large minimal counterexample.**Instead, a conjecture is considered proven only when it has been shown that it is logically impossible for it to be false.**There are various methods of doing so.One method of proof, usable when there are only a finite number of cases that could lead to counterexamples, is known as "brute force": in this approach, all possible cases are considered and shown not to give counterexamples. Sometimes the number of cases is quite large, in which situation a brute-force proof may require as a practical matter the use of a computer algorithm to check all the cases: the validity of the 1976 and 1997 brute-force proofs of the four color theorem by computer was initially doubted, but was eventually confirmed in 2005 by theorem-proving software.

**When a conjecture has been proven, it is no longer a conjecture but a theorem**. Many important theorems were once conjectures, such as the Geometrization theorem (which resolved the Poincaré conjecture), Fermat's Last Theorem, and others.**Disproof**

Conjectures
disproven through counterexample are sometimes referred to as

*false conjectures*(cf. the Pólya conjecture and Euler's sum of powers conjecture). In the case of the latter, the first counterexample found involved numbers in the millions, although subsequently it has been found that the minimal counterexample is smaller than that.**Undecidable Conjectures**

Not every conjecture ends up being proven true or false. The continuum hypothesis, which tries to ascertain the relative cardinality of certain infinite sets, was eventually shown to be undecidable (or independent) from the generally accepted set of axioms of set theory. It is therefore possible to adopt this statement, or its negation, as a new axiom in a consistent manner (much as we can take

In this case, if a proof uses this statement, researchers will often look for a new proof that

*doesn't*require the hypothesis (in the same way that it is desirable that statements in Euclidean geometry be proved using only the axioms of neutral geometry, i.e. no parallel postulate.) The one major exception to this in practice is the axiom of choice—unless studying this axiom in particular, the majority of researchers do not usually worry whether a result requires the axiom of choice.
Conditional Proofs

Sometimes a conjecture is called a

*hypothesis*when it is used frequently and repeatedly as an assumption in proofs of other results. For example, the Riemann hypothesis is a conjecture from number theory that (amongst other things) makes predictions about the distribution of prime numbers. Few number theorists doubt that the Riemann hypothesis is true. In anticipation of its eventual proof, some have proceeded to develop further proofs which are contingent on the truth of this conjecture. These are called*conditional proofs*: the conjectures assumed appear in the hypotheses of the theorem, for the time being.These "proofs", however, would fall apart if it turned out that the hypothesis was false, so there is considerable interest in verifying the truth or falsity of conjectures of this type.

Conjectures in Science

Karl Popper
pioneered the use of the term "conjecture" in scientific philosophy.

**Conjecture is related to hypothesis, which in science refers to a testable conjecture.**
## No comments:

## Post a Comment