Tuesday, April 18, 2017

Rockets with Solid Propellant

A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder; they were used in warfare by the Chinese, Indians, Mongols and Persians, as early as the 13th century.

                           Space Shuttle launch with two solid rocket boosters

All rockets used some form of solid or powdered propellant up until the 20th century, when liquid-propellant rockets offered more efficient and controllable alternatives. Solid rockets are still used today in model rockets and on larger applications for their simplicity and reliability.

Since solid-fuel rockets can remain in storage for long periods, and then reliably launch on short notice, they have been frequently used in military applications such as missiles. The lower performance of solid propellants (as compared to liquids) does not favor their use as primary propulsion in modern medium-to-large launch vehicles customarily used to orbit commercial satellites and launch major space probes. Solids are, however, frequently used as strap-on boosters to increase payload capacity or as spin-stabilized add-on upper stages when higher-than-normal velocities are required. Solid rockets are used as light launch vehicles for low Earth orbit (LEO) payloads under 2 tons or escape payloads up to 500 kilograms (1,100 lb).

Basic Concepts

A simple solid rocket motor consists of a casing, nozzle, grain (propellant charge), and igniter.

The grain behaves like a solid mass, burning in a predictable fashion and producing exhaust gases. The nozzle dimensions are calculated to maintain a design chamber pressure, while producing thrust from the exhaust gases.

Once ignited, a simple solid rocket motor cannot be shut off, because it contains all the ingredients necessary for combustion within the chamber in which they are burned. More advanced solid rocket motors can not only be throttled but also be extinguished and then re-ignited by controlling the nozzle geometry or through the use of vent ports. Also, pulsed rocket motors that burn in segments and that can be ignited upon command are available.

Modern designs may also include a steerable nozzle for guidance, avionics, recovery hardware (parachutes), self-destruct mechanisms, APUs, controllable tactical motors, controllable divert and attitude control motors, and thermal management materials.


Design begins with the total impulse required, which determines the fuel/oxidizer mass. Grain geometry and chemistry are then chosen to satisfy the required motor characteristics.

The following are chosen or solved simultaneously. The results are exact dimensions for grain, nozzle, and case geometries:

  • The grain burns at a predictable rate, given its surface area and chamber pressure.
  • The chamber pressure is determined by the nozzle orifice diameter and grain burn rate.
  • Allowable chamber pressure is a function of casing design.
  • The length of burn time is determined by the grain "web thickness".

The grain may or may not be bonded to the casing. Case-bonded motors are more difficult to design, since the deformation of the case and the grain under flight must be compatible.

Common modes of failure in solid rocket motors include fracture of the grain, failure of case bonding, and air pockets in the grain. All of these produce an instantaneous increase in burn surface area and a corresponding increase in exhaust gas production rate and pressure, which may rupture the casing.

Another failure mode is casing seal failure. Seals are required in casings that have to be opened to load the grain. Once a seal fails, hot gas will erode the escape path and result in failure. This was the cause of the Space Shuttle Challenger disaster.

No comments:

Post a Comment