Karl Ludwig von Bertalanffy (19 September 1901 – 12 June 1972) was an
Austrian biologist known as one of the founders of general systems theory
(GST). This is an interdisciplinary practice that describes systems with
interacting components, applicable to biology, cybernetics and other fields.
Bertalanffy proposed that the classical laws of thermodynamics applied to
closed systems, but not necessarily to "open systems" such as living
things. His mathematical model of an organism's growth over time, published in
1934, is still in use today.
Bertalanffy grew up inAustria and subsequently worked in Vienna , London , Canada , and the USA .
The individual growth model published by Ludwig von Bertalanffy in 1934 is widely used in biological models and exists in a number of permutations.
In its simplest version the so-called Bertalanffy growth equation is expressed as a differential equation of length (L) over time (t).
The Dynamic Energy Budget theory provides a mechanistic explanation of this model in the case of isomorphs that experience a constant food availability. The inverse of the Bertalanffy growth rate appears to depend linearly on the ultimate length, when different food levels are compared. The intercept relates to the maintenance costs, the slope to the rate at which reserve is mobilized for use by metabolism. The ultimate length equals the maximum length at high food availabilities.
Bertalanffy Equation
The Bertalanffy equation is the equation that describes the growth of a biological organism. The equation was offered by Ludwig von Bertalanffy in 1969.
Here W is organism weight, t is the time, S is the area of organism surface, V is a physical volume of the organism.
The coefficients and are (by Bertalanffy's definition) the "coefficient of anabolism" and "coefficient of catabolism" respectively.
The biologist is widely recognized for his contributions to science as a systems theorist; specifically, for the development of a theory known as general system theory (GST). The theory attempted to provide alternatives to conventional models of organization. GST defined new foundations and developments as a generalized theory of systems with applications to numerous areas of study, emphasizing holism over reductionism, organism over mechanism.
Foundational to GST are the inter-relationships between elements which all together form the whole.
Bertalanffy's contribution to systems theory is best known for his theory of open systems. The system theorist argued that traditional closed system models based on classical science and the second law of thermodynamics were inadequate for explaining large classes of phenomena. Bertalanffy maintained that “the conventional formulation of physics are, in principle, inapplicable to the living organism being open system having steady state. We may well suspect that many characteristics of living systems which are paradoxical in view of the laws of physics are a consequence of this fact.” However, while closed physical systems were questioned, questions equally remained over whether or not open physical systems could justifiably lead to a definitive science for the application of an open systems view to a general theory of systems.
In Bertalanffy’s model, the theorist defined general principles of open systems and the limitations of conventional models. He ascribed applications to biology, information theory and cybernetics. Concerning biology, examples from the open systems view suggested they “may suffice to indicate briefly the large fields of application” that could be the “outlines of a wider generalization;” from which, a hypothesis for cybernetics. Although potential applications exist in other areas, the theorist developed only the implications for biology and cybernetics. Bertalanffy also noted unsolved problems, which included continued questions over thermodynamics, thus the unsubstantiated claim that there are physical laws to support generalizations (particularly for information theory), and the need for further research into the problems and potential with the applications of the open system view from physics.
Bertalanffy grew up in
Individual Growth Model
The individual growth model published by Ludwig von Bertalanffy in 1934 is widely used in biological models and exists in a number of permutations.
In its simplest version the so-called Bertalanffy growth equation is expressed as a differential equation of length (L) over time (t).
The Dynamic Energy Budget theory provides a mechanistic explanation of this model in the case of isomorphs that experience a constant food availability. The inverse of the Bertalanffy growth rate appears to depend linearly on the ultimate length, when different food levels are compared. The intercept relates to the maintenance costs, the slope to the rate at which reserve is mobilized for use by metabolism. The ultimate length equals the maximum length at high food availabilities.
Bertalanffy Equation
The Bertalanffy equation is the equation that describes the growth of a biological organism. The equation was offered by Ludwig von Bertalanffy in 1969.
Here W is organism weight, t is the time, S is the area of organism surface, V is a physical volume of the organism.
The coefficients and are (by Bertalanffy's definition) the "coefficient of anabolism" and "coefficient of catabolism" respectively.
Bertalanffy
couldn’t explain the meaning of the parameters (the coefficient of anabolism) and (coefficient of catabolism) in his works, that
caused a fair criticism from the biologists. But the Bertalanffy equation is a
special case of the Tetearing equation, that is a more general equation of the
growth of a biological organism. The Tetearing equation determines the physical
meaning of the coefficients nd .
General System Theory
The biologist is widely recognized for his contributions to science as a systems theorist; specifically, for the development of a theory known as general system theory (GST). The theory attempted to provide alternatives to conventional models of organization. GST defined new foundations and developments as a generalized theory of systems with applications to numerous areas of study, emphasizing holism over reductionism, organism over mechanism.
Foundational to GST are the inter-relationships between elements which all together form the whole.
Open Systems
Bertalanffy's contribution to systems theory is best known for his theory of open systems. The system theorist argued that traditional closed system models based on classical science and the second law of thermodynamics were inadequate for explaining large classes of phenomena. Bertalanffy maintained that “the conventional formulation of physics are, in principle, inapplicable to the living organism being open system having steady state. We may well suspect that many characteristics of living systems which are paradoxical in view of the laws of physics are a consequence of this fact.” However, while closed physical systems were questioned, questions equally remained over whether or not open physical systems could justifiably lead to a definitive science for the application of an open systems view to a general theory of systems.
In Bertalanffy’s model, the theorist defined general principles of open systems and the limitations of conventional models. He ascribed applications to biology, information theory and cybernetics. Concerning biology, examples from the open systems view suggested they “may suffice to indicate briefly the large fields of application” that could be the “outlines of a wider generalization;” from which, a hypothesis for cybernetics. Although potential applications exist in other areas, the theorist developed only the implications for biology and cybernetics. Bertalanffy also noted unsolved problems, which included continued questions over thermodynamics, thus the unsubstantiated claim that there are physical laws to support generalizations (particularly for information theory), and the need for further research into the problems and potential with the applications of the open system view from physics.
Systems in the Social
Sciences
In the social
sciences, Bertalanffy did believe that general systems concepts were
applicable, e.g. theories that had been introduced into the field of sociology
from a modern systems approach that included “the concept of general system, of
feedback, information, communication, etc.” The theorist critiqued classical
“atomistic” conceptions of social systems and ideation “such as ‘social
physics’ as was often attempted in a reductionist spirit.” Bertalanffy also
recognized difficulties with the application of a new general theory to social
science due to the complexity of the intersections between natural sciences and
human social systems. However, the theory still encouraged for new developments
from sociology, to anthropology, economics, political science, and psychology
among other areas. Today, Bertalanffy's GST remains a bridge for
interdisciplinary study of systems in the social sciences.
No comments:
Post a Comment