The Pyréolophore was one
of the world's first internal combustion engines. It was invented in the early
19th century in Chalon-sur-Saône ,
France , by the
Niépce brothers: Nicéphore (who went on to invent photography) and Claude. In
1807 the brothers ran a prototype internal combustion engine, and on 20 July
1807 a patent was granted by Napoleon Bonaparte after it had successfully
powered a boat upstream on the river Saône.
The Pyréolophore ran on what were believed to be "controlled dust explosions" of various experimental fuels. The fuels included mixtures of Lycopodium powder (the spores of Lycopodiu, or clubmoss), finely crushed coal dust, and resin.
Operating independently, in 1807 the Swiss engineer François Isaac de Rivaz built the de Rivaz engine, a hydrogen-powered internal combustion engine. These practical engineering projects may have followed the 1680 theoretical design of an internal combustion engine by the Dutch scientist Christiaan Huygens. The separate, virtually contemporaneous implementations of this design in different modes of transport means that the de Rivaz engine may be correctly described as the first use of an internal combustion engine in an automobile (1808), whilst the Pyréolophore was the first use of an internal combustion engine in a boat (1807).
In 1807 the brothers constructed and ran a prototype internal combustion engine, and received a patent for ten years from the Bureau of Arts and Trades (French: Bureau des Arts et Métiers) in Paris. The patent was signed by Emperor Napoleon Bonaparte and dated 20 July 1807, the same year that Swiss engineer François Isaac de Rivaz constructed and ran a hydrogen-powered internal combustion engine. It is not clear how much these practical engineering projects owe to the theoretical designs of 1680 by the Dutch scientist Christiaan Huygens.
The Pyréolophore ran on controlled dust explosions of various experimental fuels, including various mixtures of finely crushed coal dust, Lycopodium powder, and resin. De Rivaz, meanwhile, was using a mixture of hydrogen and oxygen.
The operation of the Pyréolophore was first described in a meeting at theAcademy of Sciences
on 15 December 1806. Lazare Carnot noted that "there was a bright flash of
the 'spores of lycopodium' inside their sealed copper machine... The Niépce
brothers, by their own device and without using water, have managed to create a
commotion (explosion) in a confined space which is so strong that the effects
appear to be comparable to a steam engine or fire pump".
The Pyréolophore operated as a series of discrete burns at a frequency of about 12 per minute to power a boat. Power was delivered in pulses, each pulse forcing water from the engine's tail pipe set under the boat and pointing towards its stern. The boat was pushed forward at each pulse by the reactive force of the ejected mass of water.
A Pyréolophore engine consists of two principal interconnected chambers: a firelighting chamber and a combustion chamber. There is also a bellows for injecting air, a fuel dispenser, an ignition device, and a submerged exhaust pipe. There is a means of storing energy at each explosion in order to work the mechanism as it prepares itself for the next cycle.
A mechanically operated bellows injects a jet of air into the first chamber where ignition will take place. Mechanical timing lets fall a measured amount of powder fuel into the jet so that it is blown along and mixed with it. Under the control of the mechanical timing mechanism a smoldering fuse is introduced to this fuel air jet at the precise moment it passes the fuse location. The fuse then withdraws behind a metal plate. The now burning ball of powder and air travels through a wide nozzle into the main combustion chamber where a fast, almost explosive, burn takes place. The whole system now being almost airtight, a build-up of pressure follows. The pressure acts against the column of water in the exhaust pipe and expels it from the system. As the flow of exhaust gas moves into the tail pipe, it moves a loose piston in the combustion chamber which extracts and stores sufficient power to work the machine's timing mechanisms. Energy from this piston is stored by lifting weights attached to a balance wheel. The return of this wheel to its lower position under the pull of the weights governs the timing for the next cycle by operating the bellows, fuel dispenser, the fuse and valves at the correct points in the cycle. The tail pipe, being under the boat, fills with water ready for the next discharge. The fall of the timing piston also expels the exhaust gases via a pipe above the ignition chamber, which is closed off by a valve during the burn part of the cycle.
The Pyréolophore ran on what were believed to be "controlled dust explosions" of various experimental fuels. The fuels included mixtures of Lycopodium powder (the spores of Lycopodiu, or clubmoss), finely crushed coal dust, and resin.
Operating independently, in 1807 the Swiss engineer François Isaac de Rivaz built the de Rivaz engine, a hydrogen-powered internal combustion engine. These practical engineering projects may have followed the 1680 theoretical design of an internal combustion engine by the Dutch scientist Christiaan Huygens. The separate, virtually contemporaneous implementations of this design in different modes of transport means that the de Rivaz engine may be correctly described as the first use of an internal combustion engine in an automobile (1808), whilst the Pyréolophore was the first use of an internal combustion engine in a boat (1807).
Proof of Concept
In 1807 the brothers constructed and ran a prototype internal combustion engine, and received a patent for ten years from the Bureau of Arts and Trades (French: Bureau des Arts et Métiers) in Paris. The patent was signed by Emperor Napoleon Bonaparte and dated 20 July 1807, the same year that Swiss engineer François Isaac de Rivaz constructed and ran a hydrogen-powered internal combustion engine. It is not clear how much these practical engineering projects owe to the theoretical designs of 1680 by the Dutch scientist Christiaan Huygens.
The Pyréolophore ran on controlled dust explosions of various experimental fuels, including various mixtures of finely crushed coal dust, Lycopodium powder, and resin. De Rivaz, meanwhile, was using a mixture of hydrogen and oxygen.
To prove the
utility of the Pyréolophore to the patent commission, the brothers installed it
on a boat, which it powered upstream on the river Saône. The total weight was
2,000 lb (910 kg), fuel consumption was reported as "one hundred
and twenty-five grains per minute" (about 8 grams or 0.28 ounces per
minute), and the performance was 12–13 explosions per minute. The boat was
propelled forward as the Pyréolophore sucked in the river water at the front
and then pumped it out towards the rear. Thus, the Commissioners concluded that
"the machine proposed under the name Pyreolophore by Mm. Niépce is
ingenious, that it may become very interesting by its physical and economical
results, and deserves the approbation of the Commission.”
Operation
The operation of the Pyréolophore was first described in a meeting at the
The Pyréolophore operated as a series of discrete burns at a frequency of about 12 per minute to power a boat. Power was delivered in pulses, each pulse forcing water from the engine's tail pipe set under the boat and pointing towards its stern. The boat was pushed forward at each pulse by the reactive force of the ejected mass of water.
A Pyréolophore engine consists of two principal interconnected chambers: a firelighting chamber and a combustion chamber. There is also a bellows for injecting air, a fuel dispenser, an ignition device, and a submerged exhaust pipe. There is a means of storing energy at each explosion in order to work the mechanism as it prepares itself for the next cycle.
A mechanically operated bellows injects a jet of air into the first chamber where ignition will take place. Mechanical timing lets fall a measured amount of powder fuel into the jet so that it is blown along and mixed with it. Under the control of the mechanical timing mechanism a smoldering fuse is introduced to this fuel air jet at the precise moment it passes the fuse location. The fuse then withdraws behind a metal plate. The now burning ball of powder and air travels through a wide nozzle into the main combustion chamber where a fast, almost explosive, burn takes place. The whole system now being almost airtight, a build-up of pressure follows. The pressure acts against the column of water in the exhaust pipe and expels it from the system. As the flow of exhaust gas moves into the tail pipe, it moves a loose piston in the combustion chamber which extracts and stores sufficient power to work the machine's timing mechanisms. Energy from this piston is stored by lifting weights attached to a balance wheel. The return of this wheel to its lower position under the pull of the weights governs the timing for the next cycle by operating the bellows, fuel dispenser, the fuse and valves at the correct points in the cycle. The tail pipe, being under the boat, fills with water ready for the next discharge. The fall of the timing piston also expels the exhaust gases via a pipe above the ignition chamber, which is closed off by a valve during the burn part of the cycle.
No comments:
Post a Comment