Pasadena, California – January 23, 2019 -- This simple
question—asked by the four-year old son of Carnegie’s Juna Kollmeier—started it all. Not long
after this initial bedtime query, Kollmeier was coordinating a program at
the Kavli Institute for Theoretical Physics (KITP) on the Milky Way while
her one-time college classmate Sean Raymond of Université de Bordeaux
was attending a parallel KITP program on the dynamics of Earth-like planets.
After discussing this very simple question at a seminar, the two
joined forces to solve it. Their findings are the basis of a paper
published in Monthly Notices of the Royal Astronomical Society.
The duo kicked off an internet firestorm late
last year when they posted a draft of their article examining the possibility
of moons that orbit other moons on a preprint server for physics and astronomy
manuscripts.
The online conversation obsessed over the best
term to describe such phenomena with options like moonmoons and mini-moons
being thrown into the mix. But nomenclature was not the point of
Kollmeier and Raymond’s investigation (although they do have a preference for
submoons). Rather, they set out to define the physical parameters for moons
that would be capable of being stably orbited by other, smaller moons.
“Planets orbit stars and moons orbit planets, so
it was natural to ask if smaller moons could orbit larger ones,” Raymond
explained.
Their calculations show that only large moons on
wide orbits from their host planets could host submoons. Tidal forces from both
the planet and moon act to destabilize the orbits of submoons orbiting smaller
moons or moons that are closer to their host planet.
They found that four moons in our own Solar
System are theoretically capable of hosting their own satellite submoons.
Jupiter’s moon Callisto, Saturn’s moons Titan and Iapetus, and Earth’s own Moon
all fit the bill of a satellite that could host its own satellite, although
none have been found so far. However, they add that further calculations are
needed to address possible sources of submoon instability, such as the
non-uniform concentration of mass in our Moon’s crust.
“The lack of known submoons in our Solar System,
even orbiting around moons that could theoretically support such objects, can
offer us clues about how our own and neighboring planets formed, about which
there are still many outstanding questions,” Kollmeier explained.
The moons orbiting Saturn and Jupiter are thought
to have been born from the disk of gas and dust that encircle gas giant planets
in the later stages of their formation. Our own Moon, on the other hand, is
thought to have originated in the aftermath of a giant impact between the young
Earth and a Mars-sized body. The lack of stable submoons could help scientists
better understand the different forces that shaped the satellites we do see.
Kollmeier added: “and, of course, this could
inform ongoing efforts to understand how planetary systems evolve elsewhere and
how our own Solar System fits into the thousands of others discovered by
planet-hunting missions.”
For example, the newly discovered possible
exomoon orbiting the Jupiter-sized Kepler 1625b is the right mass and distance
from its host to support a submoon, Kollmeier and Raymond found. Although, the
inferred tilt of its orbit might make it difficult for such an object to remain
stable. However, detecting a submoon around an exomoon would be very
difficult.
Given the excitement surrounding searches for
potentially habitable exoplanets, Kollmeier and Raymond calculated that the
best case scenario for life on large submoons is around massive stars.
Although extremely common, small red dwarf stars are so faint and their
habitable zones so close that tidal forces are very strong and submoons (and
often even moons themselves) are unstable.
Finally, the authors point out that an artificial
submoon may be stable and thereby serve as a time capsule or outpost. On a
stable orbit around the Moon—such as the one for NASA’s proposed Lunar
Gateway—a submoon would keep humanity’s treasures safe for posterity long after
Earth became unsuitable for life. Kollmeier and Raymond agree that there is
much more work to be done (and fun to be had) to understand submoons (or the
lack thereof) as a rocky record of the history of planet-moon systems.
No comments:
Post a Comment