Scientists have pinpointed a gene that helps deadly E. coli bacteria evade antibiotics, potentially leading to better treatments for millions of people worldwide
From:
University of Queensland
January
14, 2022 -- The University of Queensland-led study found a particular form of
the bacteria -- E. coli ST131 -- had a previously unnoticed gene that made it
highly resistant to commonly prescribed antibiotics.
Professor Mark Schembri, from UQ's
School of Chemistry and Molecular Biosciences, said this 'resistance gene' can
spread incredibly quickly.
"Unlike gene transfer in humans,
where sex is required to transfer genes, bacteria have genetic structures in
their cells -- called plasmids -- that are traded quickly and easily between
each other," Professor Schembri said.
"This resistance gene is in one
such plasmid and is swiftly making E. coli ST131 extremely resistant to widely
prescribed fluoroquinolone antibiotics.
"These antibiotics are used to
treat a wide range of infections, including urinary tract infections (UTIs),
bloodstream infections and pneumonia.
"Importantly, this gene works with
other resistance genes to achieve resistance at a level greater than the
highest antibiotic concentrations that we can achieve during treatment.
"So we're going to have to rethink
our treatment plan, and strive to create antibiotics that can tackle these
infections in spite of this antibiotic resistance mechanism."
The findings have given the team the
first clues to explain how antibiotic-resistant E. coli ST131 has emerged and
spread so quickly around the world.
E. coli causes more than 150 million
infections each year, primarily urinary tract infections (UTIs).
It's also one of the most common causes
of sepsis, a disease that kills around 11 million people every year.
Now researchers' sights are set on
creating better treatments to stop E. coli ST131 infections in their tracks.
"We've lost a critical part of our
armoury to treat UTI and sepsis, but there's still hope," Professor
Schembri said.
"Now that we understand the impact
of this plasmid-mediated antibiotic resistance gene, we can devise more
tailored treatment strategies.
"These might include new
combinations of antibiotics, or even alternative non-antibiotic drugs that
block E. coli ST131 infection."
Study lead author, Dr Minh-Duy Phan,
said this information could also be used to more efficiently track emerging
resistance against critical last-line antibiotics.
"Resistance against antibiotics
like carbapenems and polymyxins is emerging rapidly in some parts of the world,
and we found the fluoroquinolone resistance gene we characterised in our study
is often linked to such resistance," Dr Phan said.
"Evolution has provided E. coli
with this gene, but I'm confident that human ingenuity can still prevail
against this deadly bacterium."
https://www.sciencedaily.com/releases/2022/01/220114115702.htm
No comments:
Post a Comment