A team mapping radio waves in the Universe has discovered something unusual that releases a giant burst of energy three times an hour, and it's unlike anything astronomers have seen before.
Source:
International Center for Radio Astronomy Research
January 27, 2022 -- Spinning around in
space, the strange object sends out a beam of radiation that crosses our line
of sight, and for a minute in every twenty, is one of the brightest radio
sources in the sky.
A team mapping radio waves in the
Universe has discovered something unusual that releases a giant burst of energy
three times an hour, and it's unlike anything astronomers have seen before.
The team who discovered it think it
could be a neutron star or a white dwarf -- collapsed cores of stars -- with an
ultra-powerful magnetic field.
Spinning around in space, the strange
object sends out a beam of radiation that crosses our line of sight, and for a
minute in every twenty, is one of the brightest radio sources in the sky.
Astrophysicist Dr Natasha Hurley-Walker,
from the Curtin University node of the International Centre for Radio Astronomy
Research, led the team that made the discovery.
"This object was appearing and
disappearing over a few hours during our observations," she said.
"That was completely unexpected. It
was kind of spooky for an astronomer because there's nothing known in the sky
that does that.
"And it's really quite close to us
-- about 4000 lightyears away. It's in our galactic backyard."
The object was discovered by Curtin
University Honours student Tyrone O'Doherty using the Murchison Widefield Array
(MWA) telescope in outback Western Australia and a new technique he developed.
"It's exciting that the source I
identified last year has turned out to be such a peculiar object," said Mr
O'Doherty, who is now studying for a PhD at Curtin.
"The MWA's wide field of view and
extreme sensitivity are perfect for surveying the entire sky and detecting the
unexpected."
Objects that turn on and off in the
Universe aren't new to astronomers -- they call them 'transients'.
ICRAR-Curtin astrophysicist and
co-author Dr Gemma Anderson said that "when studying transients, you're
watching the death of a massive star or the activity of the remnants it leaves
behind."
'Slow transients' -- like supernovae --
might appear over the course of a few days and disappear after a few months.
'Fast transients' -- like a type of
neutron star called a pulsar -- flash on and off within milliseconds or
seconds.
But Dr Anderson said finding something
that turned on for a minute was really weird.
She said the mysterious object was
incredibly bright and smaller than the Sun, emitting highly-polarised radio
waves -- suggesting the object had an extremely strong magnetic field.
Dr Hurley-Walker said the observations
match a predicted astrophysical object called an 'ultra-long period magnetar'.
"It's a type of slowly spinning
neutron star that has been predicted to exist theoretically," she said.
"But nobody expected to directly
detect one like this because we didn't expect them to be so bright.
"Somehow it's converting magnetic
energy to radio waves much more effectively than anything we've seen
before."
Dr Hurley-Walker is now monitoring the
object with the MWA to see if it switches back on.
"If it does, there are telescopes
across the Southern Hemisphere and even in orbit that can point straight to
it," she said.
Dr Hurley-Walker plans to search for
more of these unusual objects in the vast archives of the MWA.
"More detections will tell
astronomers whether this was a rare one-off event or a vast new population we'd
never noticed before," she said.
MWA Director Professor Steven Tingay
said the telescope is a precursor instrument for the Square Kilometre Array --
a global initiative to build the world's largest radio telescopes in Western
Australia and South Africa.
"Key to finding this object, and studying
its detailed properties, is the fact that we have been able to collect and
store all the data the MWA produces for almost the last decade at the Pawsey
Research Supercomputing Centre. Being able to look back through such a massive
dataset when you find an object is pretty unique in astronomy," he said.
"There are, no doubt, many more
gems to be discovered by the MWA and the SKA in coming years."
The Murchison Widefield Array is located
on the Murchison Radio-astronomy Observatory in Western Australia. The
observatory is managed by CSIRO, Australia's national science agency, and was
established with the support of the Australian and Western Australian
Governments. We acknowledge the Wajarri Yamatji as the traditional owners of
the observatory site.
The Pawsey Supercomputing Research
Centre in Perth, a Tier 1 publicly funded national supercomputing facility, helped
store and process the MWA observations used in this research.
Shanghai Astronomical Observatory (SHAO)
is a member of the MWA. China's SKA Regional Centre Prototype, funded by the
Ministry of Science and Technology of China and the Chinese Academy of
Sciences, is hosted by SHAO and contributed to processing the MWA observations
used in this research.
https://www.sciencedaily.com/releases/2022/01/220126122424.htm
No comments:
Post a Comment