Researchers build a portable desalination unit that generates clear, clean drinking water without the need for filters or high-pressure pumps.
By Adam Zewe | MIT News Office
April 28, 2022 -- MIT
researchers have developed a portable desalination unit, weighing less than 10
kilograms, that can remove particles and salts to generate drinking water.
The suitcase-sized device, which requires less power to operate than a
cell phone charger, can also be driven by a small, portable solar panel, which
can be purchased online for around $50. It automatically generates drinking
water that exceeds World Health Organization quality standards. The technology
is packaged into a user-friendly device that runs with the push of one button.
Unlike other portable desalination units that require water to pass
through filters, this device utilizes electrical power to remove particles from
drinking water. Eliminating the need for replacement filters greatly reduces the
long-term maintenance requirements.
This could enable the unit to be deployed in remote and severely
resource-limited areas, such as communities on small islands or aboard
seafaring cargo ships. It could also be used to aid refugees fleeing natural
disasters or by soldiers carrying out long-term military operations.
“This is really the culmination of a 10-year journey that I and my group
have been on. We worked for years on the physics behind individual desalination
processes, but pushing all those advances into a box, building a system, and
demonstrating it in the ocean, that was a really meaningful and rewarding
experience for me,” says senior author Jongyoon Han, a professor of electrical
engineering and computer science and of biological engineering, and a member of
the Research Laboratory of Electronics (RLE).
Joining Han on the paper are first author Junghyo Yoon, a research
scientist in RLE; Hyukjin J. Kwon, a former postdoc; SungKu Kang, a postdoc at
Northeastern University; and Eric Brack of the U.S. Army Combat Capabilities
Development Command (DEVCOM). The research has been published online in Environmental
Science and Technology.
Filter-free technology
Commercially available portable desalination units typically require
high-pressure pumps to push water through filters, which are very difficult to
miniaturize without compromising the energy-efficiency of the device, explains
Yoon.
Instead, their unit relies on a technique called ion concentration
polarization (ICP), which was pioneered by Han’s group more than 10 years ago.
Rather than filtering water, the ICP process applies an electrical field to
membranes placed above and below a channel of water. The membranes repel
positively or negatively charged particles — including salt molecules, bacteria,
and viruses — as they flow past. The charged particles are funneled into a
second stream of water that is eventually discharged.
The process removes both dissolved and suspended solids, allowing clean
water to pass through the channel. Since it only requires a low-pressure pump,
ICP uses less energy than other techniques.
But ICP does not always remove all the salts floating in the middle of
the channel. So the researchers incorporated a second process, known as
electrodialysis, to remove remaining salt ions.
Yoon and Kang used machine learning to find the ideal combination of ICP
and electrodialysis modules. The optimal setup includes a two-stage ICP
process, with water flowing through six modules in the first stage then through
three in the second stage, followed by a single electrodialysis process. This
minimized energy usage while ensuring the process remains self-cleaning.
“While it is true that some charged particles could be captured on the
ion exchange membrane, if they get trapped, we just reverse the polarity of the
electric field and the charged particles can be easily removed,” Yoon explains.
They shrunk and stacked the ICP and electrodialysis modules to improve
their energy efficiency and enable them to fit inside a portable device. The
researchers designed the device for nonexperts, with just one button to launch
the automatic desalination and purification process. Once the salinity level
and the number of particles decrease to specific thresholds, the device
notifies the user that the water is drinkable.
The researchers also created a smartphone app that can control the unit
wirelessly and report real-time data on power consumption and water salinity.
Beach tests
After running lab experiments using water with different salinity and
turbidity (cloudiness) levels, they field-tested the device at Boston’s Carson
Beach.
Yoon and Kwon set the box near the shore and tossed the feed tube into
the water. In about half an hour, the device had filled a plastic drinking cup
with clear, drinkable water.
“It was successful even in its first run, which was quite exciting and
surprising. But I think the main reason we were successful is the accumulation
of all these little advances that we made along the way,” Han says.
The resulting water exceeded World Health Organization quality
guidelines, and the unit reduced the amount of suspended solids by at least a
factor of 10. Their prototype generates drinking water at a rate of 0.3 liters
per hour, and requires only 20 watts of power per liter.
“Right now, we are pushing our research to scale up that production
rate,” Yoon says.
One of the biggest challenges of designing the portable system was
engineering an intuitive device that could be used by anyone, Han says.
Yoon hopes to make the device more user-friendly and improve its energy
efficiency and production ate through a startup he plans to launch to
commercialize the technology.
In the lab, Han wants to apply the lessons he’s learned over the past
decade to water-quality issues that go beyond desalination, such as rapidly
detecting contaminants in drinking water.
“This is definitely an exciting project, and I am proud of the progress
we have made so far, but there is still a lot of work to do,” he says.
For example, while “development of portable systems using
electro-membrane processes is an original and exciting direction in off-grid,
small-scale desalination,” the effects of fouling, especially if the water has
high turbidity, could significantly increase maintenance requirements and
energy costs, notes Nidal Hilal, professor of engineering and director of the New
York University Abu Dhabi Water research center, who was not involved with this
research.
“Another limitation is the use of expensive materials,” he adds. “It
would be interesting to see similar systems with low-cost materials in place.”
The research was funded, in part, by the DEVCOM Soldier Center, the Abdul
Latif Jameel Water and Food Systems Lab (J-WAFS), the Experimental AI Postdoc
Fellowship Program of Northeastern University, and the Roux AI Institute.
https://news.mit.edu/2022/portable-desalination-drinking-water-0428
No comments:
Post a Comment