During experiments in animal models, researchers have discovered a possible new approach to immunization against Alzheimer's disease. Their method uses a recombinant methionine (Met)-rich protein derived from corn that was then oxidized in vitro to produce the antigen: methionine sulfoxide (MetO)-rich protein.
From: University of Kansas
May 3, 2022 -- This
antigen, when injected to the body, goads the immune system into producing antibodies
against the MetO component of beta-amyloid, a protein that is toxic to brain
cells and seen as a hallmark of Alzheimer's disease. The findings have been
just published in the peer-reviewed open-access journal Antioxidants.
"As we age, we
have more oxidative stress, and then beta-amyloid and other proteins accumulate
and become oxidized and aggregated -- these proteins are resistant to
degradation or removal," said lead researcher Jackob Moskovitz, associate
professor of pharmacology & toxicology at the KU School of Pharmacy.
"In a previous 2011 published study, I injected mouse models of
Alzheimer's disease with a similar methionine sulfoxide-rich protein and showed
about 30% reduction of amyloid plaque burden in the hippocampus, the main region
where damage from Alzheimer's disease occurs."
The MetO-rich protein
used by Moskovitz for the vaccination of AD-model mice is able to prompt the
immune system to produce antibodies against MetO-containing proteins, including
MetO-harboring beta-amyloid. The introduction of the corn-based MetO-rich
protein (antigen) fosters the body's immune system to produce and deploy the
antibodies against MetO to previously tolerated MetO-containing proteins
(including MetO-beta-amyloid), and ultimately reduce the levels of toxic forms
of beta-amyloid and other possible proteins in brain.
In the new follow-up
study, Moskovitz and his co-authors injected the MetO-rich protein into
4-month-old AD-model mice that were genetically modified to develop the
familial form of Alzheimer's disease. Subsequent testing showed that this
approach provoked the mice's immune systems into producing antibodies that
could alleviate the presence of AD phenotypes at an older age (10-month-old
mice).
"This treatment
induced the production of anti-MetO antibody in blood-plasma that exhibits a
significant titer up to at least 10 months of age," according to the
authors.
Moskovitz's KU
co-authors on the Antioxidants study are Adam Smith, assistant professor of
pharmacology & toxicology; Kyle Gossman and Benjamin Dykstra, graduate
students in Smith's lab; and Philip Gao, director of the Protein Production
Group at the Del Shankel Structural Biology Center.
In a series of tests,
the KU researchers assessed the memory of injected mice against similar mice that
didn't receive the corn-based methionine sulfoxide.
"We measured
short-term memory capability through a 'Y' maze, and that's very important in
Alzheimer's disease -- because when people get Alzheimer's, their short-term
memory is going away, while the old memories are still there," Moskovitz
said. "You put a mouse in a maze shaped like a 'Y' so they can go either
the left or right arm. But then you introduce a third arm in the middle and if
they recognize the third arm as new, they'll spend more time exploring that new
arm because they have curiosity. If they don't even notice there's a third arm
-- because they forget it the minute after they saw it -- they will spend more
time in right or left."
According to Moskovitz,
there was a roughly 50% improvement in the memory of mice injected with the
methionine sulfoxide (MetO)-rich protein versus the control.
In another experiment,
mice were tasked with locating a platform in a water maze.
"We gave them six
days to learn, and even the ones with Alzheimer's eventually learn the location
of the platform -- but we found after the second day there was a big
difference, the injected mice with the antigen learn much faster than the
nonimmunized mice," Moskovitz said. "Then we remove the platform to
see if they remember where the platform was just by memory, not by looking. And
again, we saw a big difference. The antigen-immunized mice remember and spend
more time in the vicinity of the platform they were trained on compared to the
nonimmunized control mice."
In addition to
short-term memory improvement, the study showed the antigen-injected mice
exhibited better long memory capabilities, reduced beta-amyloid levels in both
blood-plasma and the brain, as well as "reduced beta-amyloid burden and
MetO accumulations in astrocytes in hippocampal and cortical regions; reduced
levels of activated microglia; and elevated antioxidant capabilities (through
enhanced nuclear localization of the transcription factor Nrf2) in the same
brain regions."
The researchers found
the data collected in the study likely are translational, suggesting active
immunization "could give a possibility of delaying or preventing AD
onset."
Moskovitz said such an
immunization could be given to people as the risk of Alzheimer's disease
increases later in life, "around the time people are told to go get a
colonoscopy for the first time in their 50s or 60s," he said.
"Further booster shots could maintain immunization, a process which people
are so familiar with from the COVID vaccines."
An active immunization
would represent an improvement over current passive immunization regimes
because the methionine sulfoxide antigen prods the immune system into producing
its own antibodies. In passive immunization, antibodies are directly injected
into the body but can have severe toxic side effects (such as brain
encephalitis) as well as being prone to rejection by the immune system as
non-self-antibodies over time.
Moskovitz said the next
steps in this line of research would be to conduct pre-clinical and clinical
trials in humans in conjunction with the sponsorship of interested
pharmaceutical companies.
https://www.sciencedaily.com/releases/2022/05/220503141332.htm
No comments:
Post a Comment