Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer
of tetrafluoroethylene that has numerous applications. The best known brand
name of PTFE-based formulas is Teflon by Chemours. Chemours is a spin-off
of DuPont, which originally discovered the compound in 1938.
PTFE is a fluorocarbon solid, as it is a high-molecular-weight compound consisting wholly of carbon and fluorine. PTFE is hydrophobic: neither water nor water-containing substances wet PTFE, as fluorocarbons demonstrate mitigatedLondon
dispersion forces due to the high electronegativity of fluorine. PTFE has one
of the lowest coefficients of friction of any solid.
PTFE is used as a non-stick coating for pans and other cookware. It is nonreactive, partly because of the strength of carbon–fluorine bonds, and so it is often used in containers and pipework for reactive and corrosive chemicals. Where used as a lubricant, PTFE reduces friction, wear, and energy consumption of machinery. It is commonly used as a graft material in surgical interventions. Also, it is frequently employed as coating on catheters; this interferes with the ability of bacteria and other infectious agents to adhere to catheters and cause hospital-acquired infections.
PTFE was accidentally discovered in 1938 by Roy J. Plunkett while he was working inNew Jersey for DuPont. As Plunkett attempted
to make a new chlorofluorocarbon refrigerant, the tetrafluoroethylene gas in
its pressure bottle stopped flowing before the bottle's weight had dropped to
the point signaling "empty." Since Plunkett was measuring the amount
of gas used by weighing the bottle, he became curious as to the source of the
weight, and finally resorted to sawing the bottle apart. He found the bottle's
interior coated with a waxy white material that was oddly slippery. Analysis
showed that it was polymerized perfluoroethylene, with the iron from the inside
of the container having acted as a catalyst at high pressure. Kinetic Chemicals
patented the new fluorinated plastic (analogous to the already known polyethylene)
in 1941, and registered the Teflon trademark in 1945.
By 1948, DuPont, which founded Kinetic Chemicals in partnership with General Motors, was producing over two million pounds (900 tons) of Teflon brand PTFE per year inParkersburg , West Virginia .
An early use was in the Manhattan Project as a material to coat valves and
seals in the pipes holding highly reactive uranium hexafluoride at the vast K-25
uranium enrichment plant in Oak Ridge ,
Tennessee .
In 1954, the wife of French engineer Marc Grégoire urged him to try the material he had been using on fishing tackle on her cooking pans. He subsequently created the first PTFE-coated, non-stick pans under the brandname Tefal (combining "Tef" from "Teflon" and "al" from aluminium). In theUnited States , Marion A. Trozzolo,
who had been using the substance on scientific utensils, marketed the first
US-made PTFE-coated pan, "The Happy Pan", in 1961.
However, Tefal was not the only company to utilize PTFE in nonstick cookware coatings. In subsequent years, many cookware manufacturers developed proprietary PTFE-based formulas, including Swiss Diamond International, which uses a diamond-reinforced PTFE formula; Scanpan, which uses a titanium-reinforced PTFE formula; and both All-Clad and Newell Rubbermaid's Calphalon, which use a non-reinforced PTFE-based nonstick. Other cookware companies, such as Meyer Corporation's Anolon, use Teflon nonstick coatings purchased from Chemours. Chemours is a 2015 corporate spin-off of DuPont.
In the 1990s, it was found that PTFE could be radiation cross-linked above its melting point in an oxygen-free environment. Electron beam processing is one example of radiation processing. Cross-linked PTFE has improved high-temperature mechanical properties and radiation stability. This was significant because, for many years, irradiation at ambient conditions has been used to break down PTFE for recycling. This radiation-induced chain scission allows it to be more easily reground and reused.
The coefficient of friction of plastics is usually measured against polished steel. PTFE's coefficient of friction is 0.05 to 0.10, which is the third-lowest of any known solid material (BAM being the first, with a coefficient of friction of 0.02; diamond-like carbon being second-lowest at 0.05). PTFE's resistance to van der Waals forces means that it is the only known surface to which a gecko cannot stick. In fact, PTFE can be used to prevent insects climbing up surfaces painted with the material. PTFE is so slippery that insects cannot get a grip and tend to fall off. For example, PTFE is used to prevent ants climbing out of formicaria.
Because of its chemical inertness, PTFE cannot be cross-linked like an elastomer. Therefore, it has no "memory" and is subject to creep. Because of its superior chemical and thermal properties, PTFE is often used as a gasket material within industries that require resistance to aggressive chemicals such as pharmaceuticals or chemical processing. However, because of the propensity to creep, the long-term performance of such seals is worse than for elastomers which exhibit zero, or near-zero, levels of creep. In critical applications,Belleville washers are
often used to apply continuous force to PTFE gaskets, ensuring a minimal loss
of performance over the lifetime of the gasket.
PTFE is a fluorocarbon solid, as it is a high-molecular-weight compound consisting wholly of carbon and fluorine. PTFE is hydrophobic: neither water nor water-containing substances wet PTFE, as fluorocarbons demonstrate mitigated
PTFE is used as a non-stick coating for pans and other cookware. It is nonreactive, partly because of the strength of carbon–fluorine bonds, and so it is often used in containers and pipework for reactive and corrosive chemicals. Where used as a lubricant, PTFE reduces friction, wear, and energy consumption of machinery. It is commonly used as a graft material in surgical interventions. Also, it is frequently employed as coating on catheters; this interferes with the ability of bacteria and other infectious agents to adhere to catheters and cause hospital-acquired infections.
History of Teflon
PTFE was accidentally discovered in 1938 by Roy J. Plunkett while he was working in
By 1948, DuPont, which founded Kinetic Chemicals in partnership with General Motors, was producing over two million pounds (900 tons) of Teflon brand PTFE per year in
In 1954, the wife of French engineer Marc Grégoire urged him to try the material he had been using on fishing tackle on her cooking pans. He subsequently created the first PTFE-coated, non-stick pans under the brandname Tefal (combining "Tef" from "Teflon" and "al" from aluminium). In the
However, Tefal was not the only company to utilize PTFE in nonstick cookware coatings. In subsequent years, many cookware manufacturers developed proprietary PTFE-based formulas, including Swiss Diamond International, which uses a diamond-reinforced PTFE formula; Scanpan, which uses a titanium-reinforced PTFE formula; and both All-Clad and Newell Rubbermaid's Calphalon, which use a non-reinforced PTFE-based nonstick. Other cookware companies, such as Meyer Corporation's Anolon, use Teflon nonstick coatings purchased from Chemours. Chemours is a 2015 corporate spin-off of DuPont.
In the 1990s, it was found that PTFE could be radiation cross-linked above its melting point in an oxygen-free environment. Electron beam processing is one example of radiation processing. Cross-linked PTFE has improved high-temperature mechanical properties and radiation stability. This was significant because, for many years, irradiation at ambient conditions has been used to break down PTFE for recycling. This radiation-induced chain scission allows it to be more easily reground and reused.
Coefficient of Friction
The coefficient of friction of plastics is usually measured against polished steel. PTFE's coefficient of friction is 0.05 to 0.10, which is the third-lowest of any known solid material (BAM being the first, with a coefficient of friction of 0.02; diamond-like carbon being second-lowest at 0.05). PTFE's resistance to van der Waals forces means that it is the only known surface to which a gecko cannot stick. In fact, PTFE can be used to prevent insects climbing up surfaces painted with the material. PTFE is so slippery that insects cannot get a grip and tend to fall off. For example, PTFE is used to prevent ants climbing out of formicaria.
Because of its chemical inertness, PTFE cannot be cross-linked like an elastomer. Therefore, it has no "memory" and is subject to creep. Because of its superior chemical and thermal properties, PTFE is often used as a gasket material within industries that require resistance to aggressive chemicals such as pharmaceuticals or chemical processing. However, because of the propensity to creep, the long-term performance of such seals is worse than for elastomers which exhibit zero, or near-zero, levels of creep. In critical applications,
No comments:
Post a Comment